Approximate Dynamic Programming

Václav Šmídl
{"title":"Approximate Dynamic Programming","authors":"Václav Šmídl","doi":"10.1201/b10384-137","DOIUrl":null,"url":null,"abstract":"Approximate Dynamic Programming (ADP), also sometimes referred to as neuro-dynamic programming, attempts to overcome some of the limitations of value iteration. Mainly, it is too expensive to compute and store the entire value function, when the state space is large (e.g., Tetris). Furthermore, a strong access to the model is required to reconstruct the optimal policy from the value function. To address these problems, there are three approximations one could make: 1. Approximate the optimal policy 2. Approximate the value function V 3. Approximately satisfy the Bellman equation","PeriodicalId":131575,"journal":{"name":"The Control Systems Handbook","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Control Systems Handbook","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/b10384-137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Approximate Dynamic Programming (ADP), also sometimes referred to as neuro-dynamic programming, attempts to overcome some of the limitations of value iteration. Mainly, it is too expensive to compute and store the entire value function, when the state space is large (e.g., Tetris). Furthermore, a strong access to the model is required to reconstruct the optimal policy from the value function. To address these problems, there are three approximations one could make: 1. Approximate the optimal policy 2. Approximate the value function V 3. Approximately satisfy the Bellman equation
近似动态规划
近似动态规划(ADP),有时也被称为神经动态规划,试图克服一些值迭代的局限性。主要是,当状态空间很大时(例如,《俄罗斯方块》),计算和存储整个值函数的成本太高。此外,需要对模型的强访问才能从值函数重构最优策略。为了解决这些问题,可以做三个近似:1。近似最优策略2。近似值函数v3。近似满足Bellman方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信