Haidar A. Almubarak, R. Stanley, Peng Guo, L. Long, Sameer Kiran Antani, G. Thoma, R. Zuna, S. R. Frazier, W. Stoecker
{"title":"A Hybrid Deep Learning and Handcrafted Feature Approach for Cervical Cancer Digital Histology Image Classification","authors":"Haidar A. Almubarak, R. Stanley, Peng Guo, L. Long, Sameer Kiran Antani, G. Thoma, R. Zuna, S. R. Frazier, W. Stoecker","doi":"10.4018/IJHISI.2019040105","DOIUrl":null,"url":null,"abstract":"Cervical cancer is the second most common cancer affecting women worldwide but is curable if diagnosed early. Routinely, expert pathologists visually examine histology slides for assessing cervix tissue abnormalities. A localized, fusion-based, hybrid imaging and deep learning approach is explored to classify squamous epithelium into cervical intraepithelial neoplasia (CIN) grades for a dataset of 83 digitized histology images. Partitioning the epithelium region into 10 vertical segments, 27 handcrafted image features and rectangular patch, sliding window-based convolutional neural network features are computed for each segment. The imaging and deep learning patch features are combined and used as inputs to a secondary classifier for individual segment and whole epithelium classification. The hybrid method achieved a 15.51% and 11.66% improvement over the deep learning and imaging approaches alone, respectively, with a 80.72% whole epithelium CIN classification accuracy, showing the enhanced epithelium CIN classification potential of fusing image and deep learning features.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"381 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHISI.2019040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Cervical cancer is the second most common cancer affecting women worldwide but is curable if diagnosed early. Routinely, expert pathologists visually examine histology slides for assessing cervix tissue abnormalities. A localized, fusion-based, hybrid imaging and deep learning approach is explored to classify squamous epithelium into cervical intraepithelial neoplasia (CIN) grades for a dataset of 83 digitized histology images. Partitioning the epithelium region into 10 vertical segments, 27 handcrafted image features and rectangular patch, sliding window-based convolutional neural network features are computed for each segment. The imaging and deep learning patch features are combined and used as inputs to a secondary classifier for individual segment and whole epithelium classification. The hybrid method achieved a 15.51% and 11.66% improvement over the deep learning and imaging approaches alone, respectively, with a 80.72% whole epithelium CIN classification accuracy, showing the enhanced epithelium CIN classification potential of fusing image and deep learning features.