Algoritmo basado en reglas de asociación para la extracción de relaciones no taxonómicas en corpus de dominio

Irvin Yair Cabrera Moreno, Mireya Tovar, José de Jesús Lavalle-Martínez, M. González
{"title":"Algoritmo basado en reglas de asociación para la extracción de relaciones no taxonómicas en corpus de dominio","authors":"Irvin Yair Cabrera Moreno, Mireya Tovar, José de Jesús Lavalle-Martínez, M. González","doi":"10.13053/rcs-148-7-21","DOIUrl":null,"url":null,"abstract":"The identification of non-taxonomic relationships is a task that is carried out with learning and the creation of ontologies. Also, the manual construction of ontologies for experts and knowledge engineers is a costly and slow task, which is why it is necessary to create automatic or semi-automatic algorithms that speed up the procedure. In this research we propose an algorithm for the extraction of non-taxonomic relationships in an ontology of Artificial Intelligence (AI), evaluated through a data mining technique: association rules, which has statistical measures that determine the probability of occurrence between the concepts and the related connector verb. The experimental results indicate that 72 % of the relationships obtained in the algorithm exist in the ontology of AI.","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-7-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The identification of non-taxonomic relationships is a task that is carried out with learning and the creation of ontologies. Also, the manual construction of ontologies for experts and knowledge engineers is a costly and slow task, which is why it is necessary to create automatic or semi-automatic algorithms that speed up the procedure. In this research we propose an algorithm for the extraction of non-taxonomic relationships in an ontology of Artificial Intelligence (AI), evaluated through a data mining technique: association rules, which has statistical measures that determine the probability of occurrence between the concepts and the related connector verb. The experimental results indicate that 72 % of the relationships obtained in the algorithm exist in the ontology of AI.
基于关联规则的域语料库非分类学关系提取算法
非分类关系的识别是一项通过学习和本体创建来完成的任务。此外,专家和知识工程师手动构建本体是一项昂贵且缓慢的任务,这就是为什么有必要创建自动或半自动算法来加快这一过程。在这项研究中,我们提出了一种算法,用于提取人工智能(AI)本体中的非分类关系,通过数据挖掘技术进行评估:关联规则,它具有确定概念和相关连接动词之间发生概率的统计度量。实验结果表明,算法得到的关系中72%存在于人工智能本体中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信