{"title":"The Posterior Matching Feedback Scheme for Joint Source-Channel Coding with Bandwidth Expansion","authors":"O. Shayevitz, M. Feder","doi":"10.1109/DCC.2009.79","DOIUrl":null,"url":null,"abstract":"When transmitting a Gaussian source over an AWGN channel with an input power constraint and a quadratic distortion measure, it is well known that optimal performance can be obtained using an analog joint source-channel scalar scheme which merely scales the input and output signals. In the case of bandwidth expansion, such a joint source-channel analog scheme attaining optimal performance is no longer simple. However, when feedback is available a simple and sequential analog linear procedure based on the Schalkwijk-Kailath scheme for communication, is optimal. Recently, we have introduced a fundamental feedback communication scheme,termed \\textit{posterior matching}, which generalizes the Schalkwijk-Kailath scheme to arbitrary memoryless channels and input distributions. In this paper, we show how the posterior matching scheme can be adapted to the joint source-channel coding setting with bandwidth expansion and a general distortion measure, when feedback is available.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
When transmitting a Gaussian source over an AWGN channel with an input power constraint and a quadratic distortion measure, it is well known that optimal performance can be obtained using an analog joint source-channel scalar scheme which merely scales the input and output signals. In the case of bandwidth expansion, such a joint source-channel analog scheme attaining optimal performance is no longer simple. However, when feedback is available a simple and sequential analog linear procedure based on the Schalkwijk-Kailath scheme for communication, is optimal. Recently, we have introduced a fundamental feedback communication scheme,termed \textit{posterior matching}, which generalizes the Schalkwijk-Kailath scheme to arbitrary memoryless channels and input distributions. In this paper, we show how the posterior matching scheme can be adapted to the joint source-channel coding setting with bandwidth expansion and a general distortion measure, when feedback is available.