Rates of convergence in adaptive universal vector quantization

M. Effros, P. Chou, R. Gray
{"title":"Rates of convergence in adaptive universal vector quantization","authors":"M. Effros, P. Chou, R. Gray","doi":"10.1109/ISIT.1994.395071","DOIUrl":null,"url":null,"abstract":"We consider the problem of adaptive universal quantization. By adaptive quantization we mean quantization for which the delay associated with encoding the jth sample in a sequence of length n is bounded for all n>j. We demonstrate the existence of an adaptive universal quantization algorithm for which any weighted sum of the rate and the expected mean square error converges almost surely and in expectation as O(/spl radic/(log log n/log n)) to the corresponding weighted sum of the rate and the distortion-rate function at that rate.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.395071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider the problem of adaptive universal quantization. By adaptive quantization we mean quantization for which the delay associated with encoding the jth sample in a sequence of length n is bounded for all n>j. We demonstrate the existence of an adaptive universal quantization algorithm for which any weighted sum of the rate and the expected mean square error converges almost surely and in expectation as O(/spl radic/(log log n/log n)) to the corresponding weighted sum of the rate and the distortion-rate function at that rate.<>
自适应通用矢量量化的收敛速度
研究了自适应全称量化问题。通过自适应量化,我们的意思是与编码长度为n的序列中的第j个样本相关的延迟对所有n>j有界的量化。我们证明了一种自适应通用量化算法的存在性,对于该算法,任何速率和期望均方误差的加权和几乎肯定地收敛,并且在期望中为O(/spl径向/(log log n/log n))收敛于该速率下相应的速率和失真率函数的加权和
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信