Learning for Learning: Predictive Online Control of Federated Learning with Edge Provisioning

Yibo Jin, Lei Jiao, Zhuzhong Qian, Sheng Zhang, Sanglu Lu
{"title":"Learning for Learning: Predictive Online Control of Federated Learning with Edge Provisioning","authors":"Yibo Jin, Lei Jiao, Zhuzhong Qian, Sheng Zhang, Sanglu Lu","doi":"10.1109/INFOCOM42981.2021.9488733","DOIUrl":null,"url":null,"abstract":"Operating federated learning optimally over distributed cloud-edge networks is a non-trivial task, which requires to manage data transference from user devices to edges, resource provisioning at edges, and federated learning between edges and the cloud. We formulate a non-linear mixed integer program, minimizing the long-term cumulative cost of such a federated learning system while guaranteeing the desired convergence of the machine learning models being trained. We then design a set of novel polynomial-time online algorithms to make adaptive decisions by solving continuous solutions and converting them to integers to control the system on the fly, based only on the predicted inputs about the dynamic and uncertain cloud-edge environments via online learning. We rigorously prove the competitive ratio, capturing the multiplicative gap between our approach using predicted inputs and the offline optimum using actual inputs. Extensive evaluations with real-world training datasets and system parameters confirm the empirical superiority of our approach over multiple state-of-the-art algorithms.","PeriodicalId":293079,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM42981.2021.9488733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Operating federated learning optimally over distributed cloud-edge networks is a non-trivial task, which requires to manage data transference from user devices to edges, resource provisioning at edges, and federated learning between edges and the cloud. We formulate a non-linear mixed integer program, minimizing the long-term cumulative cost of such a federated learning system while guaranteeing the desired convergence of the machine learning models being trained. We then design a set of novel polynomial-time online algorithms to make adaptive decisions by solving continuous solutions and converting them to integers to control the system on the fly, based only on the predicted inputs about the dynamic and uncertain cloud-edge environments via online learning. We rigorously prove the competitive ratio, capturing the multiplicative gap between our approach using predicted inputs and the offline optimum using actual inputs. Extensive evaluations with real-world training datasets and system parameters confirm the empirical superiority of our approach over multiple state-of-the-art algorithms.
为学习而学习:基于边缘供应的联邦学习的预测在线控制
在分布式云边缘网络上以最佳方式操作联邦学习是一项非常重要的任务,它需要管理从用户设备到边缘的数据传输、边缘的资源供应以及边缘和云之间的联邦学习。我们制定了一个非线性混合整数程序,最小化这种联邦学习系统的长期累积成本,同时保证所训练的机器学习模型的期望收敛性。然后,我们设计了一组新颖的多项式时间在线算法,通过求解连续解并将其转换为整数来做出自适应决策,从而通过在线学习仅基于动态和不确定云边缘环境的预测输入来动态控制系统。我们严格地证明了竞争比,捕获了我们使用预测输入的方法与使用实际输入的离线最优方法之间的乘法差距。对真实世界训练数据集和系统参数的广泛评估证实了我们的方法优于多种最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信