Boosting speed- and accuracy of gradient based dark pupil tracking using vectorization and differential evolution

A. Krause, K. Essig
{"title":"Boosting speed- and accuracy of gradient based dark pupil tracking using vectorization and differential evolution","authors":"A. Krause, K. Essig","doi":"10.1145/3314111.3319849","DOIUrl":null,"url":null,"abstract":"Gradient based dark pupil tracking [Timm and Barth 2011] is a simple and robust algorithm for pupil center estimation. The algorithm's time complexity of O(n4) can be tackled by applying a two-stage process (coarse center estimation followed by a windowed refinement), as well as by optimizing and parallelizing code using cache-friendly data structures, vector-extensions of modern CPU's and GPU acceleration. We could achieve a substantial speed up compared to a non-optimized implementation: 12x using vector extensions and 65x using a GPU. Further, the two-stage process combined with parameter optimization using differential evolution considerably increased the accuracy of the algorithm. We evaluated our implementation using the \"Labelled pupils the wild\" data set. The percentage of frames with a pixel error below 15px increased from 28% to 72%, surpassing algorithmically more complex algorithms like ExCuse (64%) and catching up with recent algorithms like PuRe (87%).","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314111.3319849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gradient based dark pupil tracking [Timm and Barth 2011] is a simple and robust algorithm for pupil center estimation. The algorithm's time complexity of O(n4) can be tackled by applying a two-stage process (coarse center estimation followed by a windowed refinement), as well as by optimizing and parallelizing code using cache-friendly data structures, vector-extensions of modern CPU's and GPU acceleration. We could achieve a substantial speed up compared to a non-optimized implementation: 12x using vector extensions and 65x using a GPU. Further, the two-stage process combined with parameter optimization using differential evolution considerably increased the accuracy of the algorithm. We evaluated our implementation using the "Labelled pupils the wild" data set. The percentage of frames with a pixel error below 15px increased from 28% to 72%, surpassing algorithmically more complex algorithms like ExCuse (64%) and catching up with recent algorithms like PuRe (87%).
利用矢量化和差分进化提高梯度暗瞳跟踪的速度和精度
基于梯度的暗瞳孔跟踪[Timm and Barth 2011]是一种简单且鲁棒的瞳孔中心估计算法。该算法的时间复杂度为0 (n4),可以通过应用两阶段过程(粗中心估计,然后是窗口细化),以及使用缓存友好的数据结构、现代CPU的矢量扩展和GPU加速来优化和并行代码来解决。与未优化的实现相比,我们可以实现显著的速度提升:使用矢量扩展12倍,使用GPU 65倍。此外,两阶段过程结合使用差分进化的参数优化大大提高了算法的准确性。我们使用“标记学生野外”数据集评估我们的实现。像素误差低于15px的帧的百分比从28%增加到72%,超过了算法更复杂的算法,如ExCuse(64%),并赶上了最近的算法,如PuRe(87%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信