Best feature selection for emotional speaker verification in i-vector representation

Lenka Máčková, Anton Ciamar, J. Juhár
{"title":"Best feature selection for emotional speaker verification in i-vector representation","authors":"Lenka Máčková, Anton Ciamar, J. Juhár","doi":"10.1109/RADIOELEK.2015.7129011","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to the gender-dependent text-independent speaker verification from Slovak emotional speech. To investigate the best speaker verification performance different features were extracted in front-end processing, namely MFCC (Mel-Frequency Cepstral Coefficients), LPC (Linear Prediction Coefficients) and LPCC (Linear Prediction Cepstral Coefficients), and their mapping into low-dimensional vector of fixed length was performed following the principles of i-vector method. In evaluation process of i-vectors scoring following Mahalanobis distance metric was employed.","PeriodicalId":193275,"journal":{"name":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2015.7129011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper is dedicated to the gender-dependent text-independent speaker verification from Slovak emotional speech. To investigate the best speaker verification performance different features were extracted in front-end processing, namely MFCC (Mel-Frequency Cepstral Coefficients), LPC (Linear Prediction Coefficients) and LPCC (Linear Prediction Cepstral Coefficients), and their mapping into low-dimensional vector of fixed length was performed following the principles of i-vector method. In evaluation process of i-vectors scoring following Mahalanobis distance metric was employed.
基于i向量表示的情感说话人验证的最佳特征选择
本文主要研究斯洛伐克语情感言语的性别独立文本说话人验证。为了研究最佳的说话人验证性能,在前端处理中提取了MFCC (Mel-Frequency Cepstral Coefficients)、LPC (Linear Prediction Coefficients)和LPCC (Linear Prediction Cepstral Coefficients)三个特征,并按照i-vector方法的原理将它们映射为固定长度的低维向量。在评价过程中,采用马氏距离度量法进行i向量评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信