Evaluation of Classifiers to a Childhood Pneumonia Computer-Aided Diagnosis System

R. T. Sousa, Oge Marques, Gabriela T. F. Curado, Ronaldo Martins da Costa, A. Soares, Fabrízzio Soares, L. L. G. D. Oliveira
{"title":"Evaluation of Classifiers to a Childhood Pneumonia Computer-Aided Diagnosis System","authors":"R. T. Sousa, Oge Marques, Gabriela T. F. Curado, Ronaldo Martins da Costa, A. Soares, Fabrízzio Soares, L. L. G. D. Oliveira","doi":"10.1109/CBMS.2014.98","DOIUrl":null,"url":null,"abstract":"This work extends PneumoCAD, a Computer-Aided Diagnosis system for detecting pneumonia in infants using radiographic images [1], with the aim of improving the system's accuracy and robustness. We implement and compare five con-temporary machine learning classifiers, namely: Naïve Bayes, K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Multi-Layer Perceptron (MLP) and Decision Tree, combined with three dimensionality reduction algorithms: Sequential Forward Selection (SFS), Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA). Current results demonstrate that Naïve Bayes classifier combined with KPCA produces the best overall results.","PeriodicalId":398710,"journal":{"name":"2014 IEEE 27th International Symposium on Computer-Based Medical Systems","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2014.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This work extends PneumoCAD, a Computer-Aided Diagnosis system for detecting pneumonia in infants using radiographic images [1], with the aim of improving the system's accuracy and robustness. We implement and compare five con-temporary machine learning classifiers, namely: Naïve Bayes, K-Nearest Neighbor (KNN), Support Vector Machines (SVM), Multi-Layer Perceptron (MLP) and Decision Tree, combined with three dimensionality reduction algorithms: Sequential Forward Selection (SFS), Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA). Current results demonstrate that Naïve Bayes classifier combined with KPCA produces the best overall results.
儿童肺炎计算机辅助诊断系统的分类器评价
这项工作扩展了肺炎cad,一种使用放射图像检测婴儿肺炎的计算机辅助诊断系统[1],目的是提高系统的准确性和鲁棒性。我们实现并比较了五种当代机器学习分类器,即:Naïve贝叶斯、k近邻(KNN)、支持向量机(SVM)、多层感知器(MLP)和决策树,并结合了三种降维算法:顺序前向选择(SFS)、主成分分析(PCA)和核主成分分析(KPCA)。目前的结果表明,Naïve贝叶斯分类器结合KPCA产生了最好的整体结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信