Utility-Based Reinforcement Learning for Reactive Grids

Julien Perez, C. Germain, B. Kégl, C. Loomis
{"title":"Utility-Based Reinforcement Learning for Reactive Grids","authors":"Julien Perez, C. Germain, B. Kégl, C. Loomis","doi":"10.1109/ICAC.2008.18","DOIUrl":null,"url":null,"abstract":"The main contribution of this paper is the presentation of a general scheduling framework for providing both QoS and fair-share in an autonomic fashion, based on 1) configurable utility functions and 2) RL as a model-free policy enactor. The main difference in our work is that we consider a multi-criteria optimization problem, including a fair-share objective. The comparison with a real and sophisticated scheduler shows that we could improve the most our RL scheme by accelerating the learning phase. More sophisticated interpolation (or regression) could speedup this phase. We plan to explore a hybrid scheme, where the RL is calibrated off-line by using the results of a real scheduler.","PeriodicalId":436716,"journal":{"name":"2008 International Conference on Autonomic Computing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2008.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The main contribution of this paper is the presentation of a general scheduling framework for providing both QoS and fair-share in an autonomic fashion, based on 1) configurable utility functions and 2) RL as a model-free policy enactor. The main difference in our work is that we consider a multi-criteria optimization problem, including a fair-share objective. The comparison with a real and sophisticated scheduler shows that we could improve the most our RL scheme by accelerating the learning phase. More sophisticated interpolation (or regression) could speedup this phase. We plan to explore a hybrid scheme, where the RL is calibrated off-line by using the results of a real scheduler.
基于效用的反应网格强化学习
本文的主要贡献是提出了一个通用的调度框架,用于以自主的方式提供QoS和公平共享,该框架基于1)可配置效用函数和2)RL作为无模型策略执行者。我们工作中的主要区别在于我们考虑了一个多标准优化问题,包括一个公平分享目标。与一个真实的复杂调度程序的比较表明,我们可以通过加速学习阶段来改进我们的强化学习方案。更复杂的插值(或回归)可以加速这一阶段。我们计划探索一种混合方案,其中RL通过使用真实调度器的结果离线校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信