Neural Network-Based Fuzzy Predictive Current Control for Doubly Fed Machine

Z. Shao, Y. Zhan
{"title":"Neural Network-Based Fuzzy Predictive Current Control for Doubly Fed Machine","authors":"Z. Shao, Y. Zhan","doi":"10.1109/CASE.2009.112","DOIUrl":null,"url":null,"abstract":"In this paper, based on the radial basis function (RBF) neural network, a fuzzy predictive current control strategy for the doubly fed machine (DFM) is presented. The dynamic model of voltage, flux linkage, electromagnetic torque and mechanical motion equation for DFM are expressed. Because the DFM structure is complex and the DFM parameters are variable according to the operating conditions and environments, in order to improve the dynamic performances of DFM, the RBF neural network and fuzzy predictive control theories are employed to design the current controller in the DFM adjustable speed system. Simulation results show effectiveness of the proposed control strategy.","PeriodicalId":294566,"journal":{"name":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2009.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, based on the radial basis function (RBF) neural network, a fuzzy predictive current control strategy for the doubly fed machine (DFM) is presented. The dynamic model of voltage, flux linkage, electromagnetic torque and mechanical motion equation for DFM are expressed. Because the DFM structure is complex and the DFM parameters are variable according to the operating conditions and environments, in order to improve the dynamic performances of DFM, the RBF neural network and fuzzy predictive control theories are employed to design the current controller in the DFM adjustable speed system. Simulation results show effectiveness of the proposed control strategy.
基于神经网络的双馈电机模糊预测电流控制
提出了一种基于径向基函数(RBF)神经网络的双馈电机模糊预测电流控制策略。建立了DFM的电压、磁链、电磁转矩的动力学模型和机械运动方程。由于DFM结构复杂,DFM参数随工况和环境的变化而变化,为了改善DFM的动态性能,采用RBF神经网络和模糊预测控制理论设计了DFM调速系统的电流控制器。仿真结果表明了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信