Evolution of Heat Transfer in Pool Boiling in Contaminated Water

Jacob D. Graham, A. Hawa, Patricia B. Weisensee
{"title":"Evolution of Heat Transfer in Pool Boiling in Contaminated Water","authors":"Jacob D. Graham, A. Hawa, Patricia B. Weisensee","doi":"10.1115/icnmm2020-1041","DOIUrl":null,"url":null,"abstract":"\n Boiling heat transfer serves as an efficient mechanism to dissipate large amounts of thermal energy due to the latent heat of phase change. In academic studies, typically ultra-pure deionized (DI) water is used to avoid contamination. However, in industrial and commercial settings, the working fluid might be contaminated with sediments, dust, salts, or organic matter. Long-term boiling processes in non-DI water cause substantial build-up of a stable layer of deposit that dramatically reduces the heat transfer coefficient. Therefore, heating applications in a contaminated medium demand strategies to prevent such fouling. Here, we studied the use of lubricant infused surfaces (LIS) and their ability to possibly minimize the deposition of calcium sulfate. Aluminum samples were infused with Krytox 102 oil and the heat transfer coefficient was investigated at a vertical and horizontal surface orientation. Fouling effects were introduced by pool boiling for 7.5 hours in a 6.97 mM calcium sulfate solution at constant heat flux. Heat flux curves for both plain aluminum and LIS were calibrated before contamination. Initially, the LIS was unable to support a nucleate phase and transitioned directly from liquid convection to film boiling heat transfer. Upon partial degradation of the lubricant layer during long-run experiments, nucleate boiling ensued. Over 7.5 hours, the heat transfer coefficient of each sample (Al and LIS) degraded between 5.4% and 7.9% with no significant correlation with either lubricant treatment or surface orientation. Post boiling profilometry was conducted on each sample to characterize the thickness and distribution of the calcium sulfate layer. In these experiments, the plain aluminum surface outperformed the LIS at both orientations in minimizing calcium layer thickness. The LIS oriented vertically outperformed the LIS oriented horizontally.","PeriodicalId":198176,"journal":{"name":"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icnmm2020-1041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Boiling heat transfer serves as an efficient mechanism to dissipate large amounts of thermal energy due to the latent heat of phase change. In academic studies, typically ultra-pure deionized (DI) water is used to avoid contamination. However, in industrial and commercial settings, the working fluid might be contaminated with sediments, dust, salts, or organic matter. Long-term boiling processes in non-DI water cause substantial build-up of a stable layer of deposit that dramatically reduces the heat transfer coefficient. Therefore, heating applications in a contaminated medium demand strategies to prevent such fouling. Here, we studied the use of lubricant infused surfaces (LIS) and their ability to possibly minimize the deposition of calcium sulfate. Aluminum samples were infused with Krytox 102 oil and the heat transfer coefficient was investigated at a vertical and horizontal surface orientation. Fouling effects were introduced by pool boiling for 7.5 hours in a 6.97 mM calcium sulfate solution at constant heat flux. Heat flux curves for both plain aluminum and LIS were calibrated before contamination. Initially, the LIS was unable to support a nucleate phase and transitioned directly from liquid convection to film boiling heat transfer. Upon partial degradation of the lubricant layer during long-run experiments, nucleate boiling ensued. Over 7.5 hours, the heat transfer coefficient of each sample (Al and LIS) degraded between 5.4% and 7.9% with no significant correlation with either lubricant treatment or surface orientation. Post boiling profilometry was conducted on each sample to characterize the thickness and distribution of the calcium sulfate layer. In these experiments, the plain aluminum surface outperformed the LIS at both orientations in minimizing calcium layer thickness. The LIS oriented vertically outperformed the LIS oriented horizontally.
污水池沸腾过程中的传热演化
由于相变潜热的存在,沸腾传热是一种耗散大量热能的有效机制。在学术研究中,通常使用超纯去离子水(DI)来避免污染。然而,在工业和商业环境中,工作流体可能被沉积物、灰尘、盐或有机物污染。在非去离子水中的长期沸腾过程会导致稳定沉积物层的大量积聚,从而大大降低传热系数。因此,在污染介质中的加热应用需要防止这种污染的策略。在这里,我们研究了润滑注入表面(LIS)的使用及其可能减少硫酸钙沉积的能力。采用Krytox 102油注入铝样品,在垂直和水平方向上研究了铝样品的传热系数。在6.97 mM硫酸钙溶液中,恒热流密度池沸腾7.5小时,观察了结垢效果。在污染前对普通铝和LIS的热流密度曲线进行了校准。最初,LIS无法支持成核相,直接从液体对流过渡到膜沸腾传热。在长时间的实验中,润滑油层的部分降解导致了核沸腾。在7.5小时内,每个样品(Al和LIS)的传热系数在5.4%到7.9%之间下降,与润滑剂处理或表面取向没有显著相关性。对每个样品进行沸腾后轮廓测定,以表征硫酸钙层的厚度和分布。在这些实验中,在最小化钙层厚度方面,普通铝表面在两个方向上都优于LIS。垂直方向的LIS优于水平方向的LIS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信