Classification of iris regions using Principal Component Analysis and Support Vector Machine

A. Nor'aini, R. Sahak, A. Saparon
{"title":"Classification of iris regions using Principal Component Analysis and Support Vector Machine","authors":"A. Nor'aini, R. Sahak, A. Saparon","doi":"10.1109/ICSIPA.2013.6707991","DOIUrl":null,"url":null,"abstract":"This paper presents the classification of vagina and pelvis from iris region based on iridology chart using Principal Component Analysis (PCA) and Support Vector Machine with Radial Basis Function kernel (SVM-RBF). The Circular Boundary Detector (CBD) has been introduced for localizing the iris region. This method is able to localize and segment the iris with 100% accuracy. The segmented iris was unwrapped into polar form and cropped into regions of vagina and pelvis based on iridology chart. Features obtained from the cropped regions are extracted using Principle Components Analysis (PCA) and are the inputs to SVM-RBF. Classification accuracy is computed through the comparison of each test feature vector with the target vectors. This study provides the foundation for the development of diagnostic system to monitor the health condition of human body parts.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6707991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the classification of vagina and pelvis from iris region based on iridology chart using Principal Component Analysis (PCA) and Support Vector Machine with Radial Basis Function kernel (SVM-RBF). The Circular Boundary Detector (CBD) has been introduced for localizing the iris region. This method is able to localize and segment the iris with 100% accuracy. The segmented iris was unwrapped into polar form and cropped into regions of vagina and pelvis based on iridology chart. Features obtained from the cropped regions are extracted using Principle Components Analysis (PCA) and are the inputs to SVM-RBF. Classification accuracy is computed through the comparison of each test feature vector with the target vectors. This study provides the foundation for the development of diagnostic system to monitor the health condition of human body parts.
基于主成分分析和支持向量机的虹膜区域分类
本文采用主成分分析(PCA)和径向基函数核支持向量机(SVM-RBF)对虹膜区域进行阴道和骨盆的分类。引入了圆形边界检测器(CBD)来定位虹膜区域。该方法能够以100%的准确率对虹膜进行定位和分割。根据虹膜学图,将分割的虹膜展开成极状,切割成阴道和骨盆区域。从裁剪区域获得的特征使用主成分分析(PCA)提取,并作为SVM-RBF的输入。通过每个测试特征向量与目标向量的比较来计算分类精度。本研究为人体各部位健康状况监测诊断系统的开发奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信