Range invariant anomaly detection for LWIR polarimetric imagery

J. Romano, D. Rosario
{"title":"Range invariant anomaly detection for LWIR polarimetric imagery","authors":"J. Romano, D. Rosario","doi":"10.1109/AIPR.2014.7041931","DOIUrl":null,"url":null,"abstract":"In this paper we present a modified version of a previously proposed anomaly detector for polarimetric imagery. This modified version is a more adaptive, range invariant anomaly detector based on the covariance difference test, the M-Box. The paper demonstrates the underlying issue of range to target dependency of the previous algorithm and offers a solution that is very easily implemented with the M-Box covariance test. Results are shown where the new algorithm is capable of identifying manmade objects as anomalies in both close and long range scenarios.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"319 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we present a modified version of a previously proposed anomaly detector for polarimetric imagery. This modified version is a more adaptive, range invariant anomaly detector based on the covariance difference test, the M-Box. The paper demonstrates the underlying issue of range to target dependency of the previous algorithm and offers a solution that is very easily implemented with the M-Box covariance test. Results are shown where the new algorithm is capable of identifying manmade objects as anomalies in both close and long range scenarios.
LWIR偏振图像距离不变异常检测
在本文中,我们提出了一个修改版本的以前提出的异常探测器的偏振图像。这个改进的版本是一个更自适应的,距离不变的异常检测器基于协方差差异检验,M-Box。本文论证了先前算法的距离与目标依赖的潜在问题,并提供了一个非常容易实现的M-Box协方差检验的解决方案。结果显示,新算法能够在近距离和远程场景中将人造物体识别为异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信