Continuous Verification of Machine Learning: a Declarative Programming Approach

Ekaterina Komendantskaya, W. Kokke, Daniel Kienitz
{"title":"Continuous Verification of Machine Learning: a Declarative Programming Approach","authors":"Ekaterina Komendantskaya, W. Kokke, Daniel Kienitz","doi":"10.1145/3414080.3414081","DOIUrl":null,"url":null,"abstract":"In this invited talk, we discuss state of the art in neural network verification. We propose the term continuous verification to characterise the family of methods that explore continuous nature of machine learning algorithms. We argue that methods of continuous verification must rely on robust programming language infrastructure (refinement types, automated proving, type-driven program synthesis), which provides a major opportunity for the declarative programming language community. Keywords: Neural Networks, Verification, AI.","PeriodicalId":328721,"journal":{"name":"Proceedings of the 22nd International Symposium on Principles and Practice of Declarative Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Symposium on Principles and Practice of Declarative Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3414080.3414081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this invited talk, we discuss state of the art in neural network verification. We propose the term continuous verification to characterise the family of methods that explore continuous nature of machine learning algorithms. We argue that methods of continuous verification must rely on robust programming language infrastructure (refinement types, automated proving, type-driven program synthesis), which provides a major opportunity for the declarative programming language community. Keywords: Neural Networks, Verification, AI.
机器学习的持续验证:声明式编程方法
在本次特邀演讲中,我们将讨论神经网络验证的最新进展。我们提出术语连续验证来描述探索机器学习算法连续性质的方法家族。我们认为,持续验证的方法必须依赖于健壮的编程语言基础结构(细化类型、自动证明、类型驱动的程序合成),这为声明性编程语言社区提供了一个主要的机会。关键词:神经网络,验证,人工智能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信