Soumyajit Gupta, Rahul Agrawal, R. Layek, J. Mukhopadhyay
{"title":"Psychovisual saliency in color images","authors":"Soumyajit Gupta, Rahul Agrawal, R. Layek, J. Mukhopadhyay","doi":"10.1109/NCVPRIPG.2013.6776158","DOIUrl":null,"url":null,"abstract":"Visual attention is an indispensable component of complex vision tasks. When looking at a complex scene, our ocular perception is confronted with a large amount of data that needs to be broken down for processing by our psychovisual system. Selective visual attention provides a mechanism for serializing the visual data, allowing for sequential processing of the content of the scene. A Bottom-Up computational model is described that simulates the psycho-visual model of saliency based on features of intensity and color. The method gives sequential priorities to objects which other computational models cannot account for. The results demonstrate a fast execution time, full resolution maps and high detection accuracy. The model is applicable on both natural and artificial images.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Visual attention is an indispensable component of complex vision tasks. When looking at a complex scene, our ocular perception is confronted with a large amount of data that needs to be broken down for processing by our psychovisual system. Selective visual attention provides a mechanism for serializing the visual data, allowing for sequential processing of the content of the scene. A Bottom-Up computational model is described that simulates the psycho-visual model of saliency based on features of intensity and color. The method gives sequential priorities to objects which other computational models cannot account for. The results demonstrate a fast execution time, full resolution maps and high detection accuracy. The model is applicable on both natural and artificial images.