Detection of Signals in Nonstationary Random Noise via Stationarization of Data Incorporated with Kalman Filter

H. Ijima, Y. Yamashita, A. Ohsumi
{"title":"Detection of Signals in Nonstationary Random Noise via Stationarization of Data Incorporated with Kalman Filter","authors":"H. Ijima, Y. Yamashita, A. Ohsumi","doi":"10.1109/ISSPIT.2007.4458098","DOIUrl":null,"url":null,"abstract":"Recently, the authors have proposed a method for the detection of signals corrupted by nonstationary random noise based on stationarization of the observation data which can be modeled by the first-order Ito stochastic differential equation. In this paper, in order to apply this method to more general situation, we propose a stationarization method incorporated with Kalman filter. To test the proposed method simulation experiments are presented.","PeriodicalId":299267,"journal":{"name":"2007 IEEE International Symposium on Signal Processing and Information Technology","volume":"36 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2007.4458098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, the authors have proposed a method for the detection of signals corrupted by nonstationary random noise based on stationarization of the observation data which can be modeled by the first-order Ito stochastic differential equation. In this paper, in order to apply this method to more general situation, we propose a stationarization method incorporated with Kalman filter. To test the proposed method simulation experiments are presented.
基于卡尔曼滤波数据平稳化的非平稳随机噪声信号检测
最近,作者提出了一种基于观测数据平稳化的检测非平稳随机噪声干扰信号的方法,该方法可以用一阶伊藤随机微分方程来建模。在本文中,为了将该方法应用于更一般的情况,我们提出了一种结合卡尔曼滤波的平稳化方法。为了验证所提出的方法,给出了仿真实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信