Sentiment analysis of Turkish Twitter data

H. Shehu, S. Tokat, Md. Haidar Sharif, S. Uyaver
{"title":"Sentiment analysis of Turkish Twitter data","authors":"H. Shehu, S. Tokat, Md. Haidar Sharif, S. Uyaver","doi":"10.1063/1.5136197","DOIUrl":null,"url":null,"abstract":"In this paper, we present a mechanism to predict the sentiment on Turkish tweets by adopting two methods based on polarity lexicon (PL) and artificial intelligence (AI). The method of PL introduces a dictionary of words and matches the words to those in the harvested tweets. The tweets are then classified to be either positive, negative, or neutral based on the result found after matching them to the words in the dictionary. The method of AI uses support vector machine (SVM) and random forest (RF) classifiers to classify the tweets as either positive, negative or neutral. Experimental results show that SVM performs better on stemmed data by achieving an accuracy of 76%, whereas RF performs better on raw data with an accuracy of 88%. The performance of PL method increases continuously from 45% to 57% as data are being modified from a raw data to a stemmed data.","PeriodicalId":175596,"journal":{"name":"THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019)","volume":"826 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5136197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we present a mechanism to predict the sentiment on Turkish tweets by adopting two methods based on polarity lexicon (PL) and artificial intelligence (AI). The method of PL introduces a dictionary of words and matches the words to those in the harvested tweets. The tweets are then classified to be either positive, negative, or neutral based on the result found after matching them to the words in the dictionary. The method of AI uses support vector machine (SVM) and random forest (RF) classifiers to classify the tweets as either positive, negative or neutral. Experimental results show that SVM performs better on stemmed data by achieving an accuracy of 76%, whereas RF performs better on raw data with an accuracy of 88%. The performance of PL method increases continuously from 45% to 57% as data are being modified from a raw data to a stemmed data.
土耳其推特数据的情绪分析
在本文中,我们提出了一种基于极性词典(PL)和人工智能(AI)两种方法预测土耳其语推文情绪的机制。PL的方法引入了一个单词字典,并将这些单词与收集到的tweet中的单词进行匹配。然后,根据将tweet与字典中的单词进行匹配后的结果,将tweet分类为积极、消极或中性。人工智能的方法使用支持向量机(SVM)和随机森林(RF)分类器对推文进行正面、负面或中性的分类。实验结果表明,SVM在主干数据上的准确率达到76%,而RF在原始数据上的准确率达到88%。随着数据从原始数据到衍生数据的修改,PL方法的性能从45%持续增长到57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信