Job completion prediction in grid using distributed case-based reasoning

L. Nassif, J. Nogueira, Mohamed Ahmed, A. Karmouch, R. Impey, F. D. Andrade
{"title":"Job completion prediction in grid using distributed case-based reasoning","authors":"L. Nassif, J. Nogueira, Mohamed Ahmed, A. Karmouch, R. Impey, F. D. Andrade","doi":"10.1109/WETICE.2005.44","DOIUrl":null,"url":null,"abstract":"Grid allows several entities to share their computational resources. Selecting the best resource to run a job can become a complex and inadequate task for the user since grid is a distributed, dynamic, and heterogeneous network. The current frameworks for this problem still face some challenges. Users never know when the job will finish and what the service provider guarantees. Moreover, job scheduling for a future time is unavailable in most existing framework solutions since they lack performance prediction techniques. This paper presents an approach to job execution time prediction in grid using the case-based reasoning paradigm. The prediction module presented is part of a multi-agent system that selects the best resource to run a job in the grid environment. Case retrieval algorithms involving relevance and geometric matching are presented. We also elaborate adaptation algorithms that use prediction techniques for job workload forecasting.","PeriodicalId":128074,"journal":{"name":"14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE'05)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE.2005.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Grid allows several entities to share their computational resources. Selecting the best resource to run a job can become a complex and inadequate task for the user since grid is a distributed, dynamic, and heterogeneous network. The current frameworks for this problem still face some challenges. Users never know when the job will finish and what the service provider guarantees. Moreover, job scheduling for a future time is unavailable in most existing framework solutions since they lack performance prediction techniques. This paper presents an approach to job execution time prediction in grid using the case-based reasoning paradigm. The prediction module presented is part of a multi-agent system that selects the best resource to run a job in the grid environment. Case retrieval algorithms involving relevance and geometric matching are presented. We also elaborate adaptation algorithms that use prediction techniques for job workload forecasting.
基于分布式案例推理的网格作业完成预测
网格允许多个实体共享它们的计算资源。对于用户来说,选择运行作业的最佳资源可能是一项复杂且不充分的任务,因为网格是一种分布式、动态和异构的网络。目前解决这一问题的框架仍面临一些挑战。用户永远不知道工作何时完成,也不知道服务提供商保证什么。此外,由于缺乏性能预测技术,大多数现有框架解决方案无法对未来时间进行作业调度。提出了一种基于案例推理的网格作业执行时间预测方法。所提出的预测模块是一个多代理系统的一部分,该系统选择网格环境中运行作业的最佳资源。提出了涉及相关度和几何匹配的案例检索算法。我们还详细阐述了使用预测技术进行工作工作量预测的自适应算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信