Forecasting of Electric Energy Consumption for Housing Cooperative with a Grid Connected PV System

J. Solis, T. Oka, J. Ericsson, M. Nilsson
{"title":"Forecasting of Electric Energy Consumption for Housing Cooperative with a Grid Connected PV System","authors":"J. Solis, T. Oka, J. Ericsson, M. Nilsson","doi":"10.1109/icSmartGrid48354.2019.8990767","DOIUrl":null,"url":null,"abstract":"Our research aims to develop an adaptive control system for photovoltaic systems with energy storage that adapts after changing different kinds of conditions. In particular, for efficient controlling of battery storage, the precise prediction of electricity consumption is required. Due to the complexity of the proposed research, in this paper, we proposed the simplification of the complexity of the long short-term memory model for the forecasting of the electric energy consumption from a house cooperative in Karlstad, Sweden. Based on the experimental results, there is a 1.233 kWh of mean absolute error and 1.859 kWh of root-mean square error for the predicted energy consumption (validated from testing data collected 7 days after the collected training data for the selected deep learning model).","PeriodicalId":403137,"journal":{"name":"2019 7th International Conference on Smart Grid (icSmartGrid)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Smart Grid (icSmartGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icSmartGrid48354.2019.8990767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Our research aims to develop an adaptive control system for photovoltaic systems with energy storage that adapts after changing different kinds of conditions. In particular, for efficient controlling of battery storage, the precise prediction of electricity consumption is required. Due to the complexity of the proposed research, in this paper, we proposed the simplification of the complexity of the long short-term memory model for the forecasting of the electric energy consumption from a house cooperative in Karlstad, Sweden. Based on the experimental results, there is a 1.233 kWh of mean absolute error and 1.859 kWh of root-mean square error for the predicted energy consumption (validated from testing data collected 7 days after the collected training data for the selected deep learning model).
光伏并网住宅合作社电能消耗预测
我们的研究目标是开发一种能适应不同条件变化的储能光伏系统自适应控制系统。特别是,为了有效地控制电池的存储,需要精确的电力消耗预测。由于研究的复杂性,在本文中,我们提出了简化长短期记忆模型的复杂性来预测瑞典卡尔斯塔德的一个家庭合作社的电力消耗。根据实验结果,预测能耗的平均绝对误差为1.233 kWh,均方根误差为1.859 kWh(从所选深度学习模型收集的训练数据7天后收集的测试数据进行验证)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信