Empirical mode decomposition of EEG signals for brain computer interface

MD Erfanul Alam, B. Samanta
{"title":"Empirical mode decomposition of EEG signals for brain computer interface","authors":"MD Erfanul Alam, B. Samanta","doi":"10.1109/SECON.2017.7925341","DOIUrl":null,"url":null,"abstract":"Motor imagery (MI) based brain-computer interface (BCI) systems show potential applications in neural rehabilitation. In MI-BCI systems, the brain signals from movement imagination, without actual movement of limbs, can be acquired, processed and characterized to translate into actionable signals that can be used to activate external devices. However, success of such MI-BCI systems, depends on the reliable processing of the noisy, non-linear, and non-stationary brain activity signals for extraction of characteristic features for effective classification of MI activity and translation into corresponding actions. In this work, a signal processing technique, namely, empirical mode decomposition (EMD), has been proposed for processing EEG signals acquired from volunteer subjects for characterizing MI activities and activity identification.","PeriodicalId":368197,"journal":{"name":"SoutheastCon 2017","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoutheastCon 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2017.7925341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Motor imagery (MI) based brain-computer interface (BCI) systems show potential applications in neural rehabilitation. In MI-BCI systems, the brain signals from movement imagination, without actual movement of limbs, can be acquired, processed and characterized to translate into actionable signals that can be used to activate external devices. However, success of such MI-BCI systems, depends on the reliable processing of the noisy, non-linear, and non-stationary brain activity signals for extraction of characteristic features for effective classification of MI activity and translation into corresponding actions. In this work, a signal processing technique, namely, empirical mode decomposition (EMD), has been proposed for processing EEG signals acquired from volunteer subjects for characterizing MI activities and activity identification.
脑机接口脑电信号的经验模态分解
基于运动图像(MI)的脑机接口(BCI)系统在神经康复中具有潜在的应用前景。在MI-BCI系统中,来自运动想象的大脑信号,无需肢体的实际运动,可以被获取、处理和表征,转化为可操作的信号,用于激活外部设备。然而,这种MI- bci系统的成功取决于对有噪声、非线性和非平稳的大脑活动信号进行可靠的处理,以提取特征特征,从而有效地分类MI活动并将其转化为相应的动作。在这项工作中,我们提出了一种信号处理技术,即经验模式分解(EMD),用于处理志愿者获得的脑电信号,以表征MI活动和识别活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信