Scalable Auto-Tuning of Synthesis Parameters for Optimizing High-Performance Processors

M. Ziegler, Hung-Yi Liu, L. Carloni
{"title":"Scalable Auto-Tuning of Synthesis Parameters for Optimizing High-Performance Processors","authors":"M. Ziegler, Hung-Yi Liu, L. Carloni","doi":"10.1145/2934583.2934620","DOIUrl":null,"url":null,"abstract":"Modern logic and physical synthesis tools provide numerous options and parameters that can drastically impact design quality; however, the large number of options leads to a complex design space difficult for human designers to navigate. By employing intelligent search strategies and parallel computing we can tackle this parameter tuning problem, thus automating one of the key design tasks conventionally performed by a human designer. In this paper we present a novel learning-based algorithm for synthesis parameter optimization. This new algorithm has been integrated into our existing autonomous parameter-tuning system, which was used to design multiple 22nm industrial chips and is currently being used for 14nm chips. These techniques show, on average, over 40% reduction in total negative slack and over 10% power reduction across hundreds of 14nm industrial processor macros while reducing overall human design effort. We also present a new higher-level system that manages parameter tuning of multiple designs in a scalable way. This new system addresses the needs of large design teams by prioritizing the tuning effort to maximize returns given the available compute resources.","PeriodicalId":142716,"journal":{"name":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2934583.2934620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Modern logic and physical synthesis tools provide numerous options and parameters that can drastically impact design quality; however, the large number of options leads to a complex design space difficult for human designers to navigate. By employing intelligent search strategies and parallel computing we can tackle this parameter tuning problem, thus automating one of the key design tasks conventionally performed by a human designer. In this paper we present a novel learning-based algorithm for synthesis parameter optimization. This new algorithm has been integrated into our existing autonomous parameter-tuning system, which was used to design multiple 22nm industrial chips and is currently being used for 14nm chips. These techniques show, on average, over 40% reduction in total negative slack and over 10% power reduction across hundreds of 14nm industrial processor macros while reducing overall human design effort. We also present a new higher-level system that manages parameter tuning of multiple designs in a scalable way. This new system addresses the needs of large design teams by prioritizing the tuning effort to maximize returns given the available compute resources.
优化高性能处理器合成参数的可伸缩自动调谐
现代逻辑和物理合成工具提供了许多选项和参数,可以极大地影响设计质量;然而,大量的选择导致了一个复杂的设计空间,很难让人类设计师驾驭。通过采用智能搜索策略和并行计算,我们可以解决这个参数调优问题,从而自动化传统上由人类设计师执行的关键设计任务之一。本文提出了一种新的基于学习的综合参数优化算法。这种新算法已经集成到我们现有的自主参数调谐系统中,该系统用于设计多个22nm工业芯片,目前正在用于14nm芯片。这些技术表明,平均而言,在数百个14nm工业处理器宏中,总负松弛量减少了40%以上,功耗降低了10%以上,同时减少了总体的人类设计工作量。我们还提出了一个新的高级系统,以可扩展的方式管理多个设计的参数调整。这个新系统解决了大型设计团队的需求,在给定可用计算资源的情况下,对调优工作进行了优先级排序,使回报最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信