A Cognitive Radio Spectrum Sensing Method for an OFDM Signal Based on Deep Learning and Cycle Spectrum

Guangliang Pan, Jun Li, Fei Lin
{"title":"A Cognitive Radio Spectrum Sensing Method for an OFDM Signal Based on Deep Learning and Cycle Spectrum","authors":"Guangliang Pan, Jun Li, Fei Lin","doi":"10.1155/2020/5069021","DOIUrl":null,"url":null,"abstract":"In a cognitive radio network (CRN), spectrum sensing is an important prerequisite for improving the utilization of spectrum resources. In this paper, we propose a novel spectrum sensing method based on deep learning and cycle spectrum, which applies the advantage of the convolutional neural network (CNN) in an image to the spectrum sensing of an orthogonal frequency division multiplex (OFDM) signal. Firstly, we analyze the cyclic autocorrelation of an OFDM signal and the cyclic spectrum obtained by the time domain smoothing fast Fourier transformation (FFT) accumulation algorithm (FAM), and the cyclic spectrum is normalized to gray scale processing to form a cyclic autocorrelation gray scale image. Then, we learn the deep features of layer-by-layer extraction by the improved CNN classic LeNet-5 model. Finally, we input the test set to verify the trained CNN model. Simulation experiments show that this method can complete the spectrum sensing task by taking advantage of the cycle spectrum, which has better spectrum sensing performance for OFDM signals under a low signal-noise ratio (SNR) than traditional methods.","PeriodicalId":204253,"journal":{"name":"Int. J. Digit. Multim. Broadcast.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Digit. Multim. Broadcast.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/5069021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In a cognitive radio network (CRN), spectrum sensing is an important prerequisite for improving the utilization of spectrum resources. In this paper, we propose a novel spectrum sensing method based on deep learning and cycle spectrum, which applies the advantage of the convolutional neural network (CNN) in an image to the spectrum sensing of an orthogonal frequency division multiplex (OFDM) signal. Firstly, we analyze the cyclic autocorrelation of an OFDM signal and the cyclic spectrum obtained by the time domain smoothing fast Fourier transformation (FFT) accumulation algorithm (FAM), and the cyclic spectrum is normalized to gray scale processing to form a cyclic autocorrelation gray scale image. Then, we learn the deep features of layer-by-layer extraction by the improved CNN classic LeNet-5 model. Finally, we input the test set to verify the trained CNN model. Simulation experiments show that this method can complete the spectrum sensing task by taking advantage of the cycle spectrum, which has better spectrum sensing performance for OFDM signals under a low signal-noise ratio (SNR) than traditional methods.
基于深度学习和周期频谱的OFDM信号认知频谱感知方法
在认知无线电网络(CRN)中,频谱感知是提高频谱资源利用率的重要前提。本文提出了一种基于深度学习和周期频谱的频谱感知方法,将卷积神经网络(CNN)在图像中的优势应用于正交频分复用(OFDM)信号的频谱感知。首先,对OFDM信号的循环自相关特性和时域平滑快速傅立叶变换(FFT)积累算法(FAM)得到的循环频谱进行分析,并对循环频谱进行归一化灰度处理,形成循环自相关灰度图像。然后,我们通过改进的CNN经典LeNet-5模型学习逐层提取的深度特征。最后,我们输入测试集来验证训练好的CNN模型。仿真实验表明,该方法可以利用周期频谱完成频谱感知任务,在低信噪比条件下对OFDM信号具有比传统方法更好的频谱感知性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信