Application of Kalman filtering to the calibration and alignment of inertial navigation systems

M. Grewal, V. D. Henderson, R. Miyasako
{"title":"Application of Kalman filtering to the calibration and alignment of inertial navigation systems","authors":"M. Grewal, V. D. Henderson, R. Miyasako","doi":"10.1109/CDC.1990.203410","DOIUrl":null,"url":null,"abstract":"Problem areas and practical solutions in the development of large-dimension Kalman filters for the calibration and alignment of complex inertial guidance systems are discussed. The basic vector attitude error equation is augmented by gyro and accelerometer unknown parameters. The parameter estimation problem is converted into a state estimation problem. A complete approach and description of the dual extended Kalman filter, one for accelerometers and one for gyros, is given. To reduce computational load, a technique of prefiltering (data compression or measurement averaging) has been implemented in the mechanization with very little degradation in the performance of the filter. The models of gyros and accelerometers used are described in detail. A technique for generating parameter excitation trajectories which provides observability of instrument parameters has been developed by maximizing the information matrix. A typical set of results for a simulator data set for parameter estimates and innovation sequences is given to show the performance, convergence, accuracy, and stability of the filter estimates.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"203","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 203

Abstract

Problem areas and practical solutions in the development of large-dimension Kalman filters for the calibration and alignment of complex inertial guidance systems are discussed. The basic vector attitude error equation is augmented by gyro and accelerometer unknown parameters. The parameter estimation problem is converted into a state estimation problem. A complete approach and description of the dual extended Kalman filter, one for accelerometers and one for gyros, is given. To reduce computational load, a technique of prefiltering (data compression or measurement averaging) has been implemented in the mechanization with very little degradation in the performance of the filter. The models of gyros and accelerometers used are described in detail. A technique for generating parameter excitation trajectories which provides observability of instrument parameters has been developed by maximizing the information matrix. A typical set of results for a simulator data set for parameter estimates and innovation sequences is given to show the performance, convergence, accuracy, and stability of the filter estimates.<>
卡尔曼滤波在惯性导航系统标定对准中的应用
讨论了用于复杂惯性制导系统标定和对准的大维卡尔曼滤波器的发展中存在的问题和实际解决方案。利用陀螺和加速度计的未知参数扩充了基本矢量姿态误差方程。将参数估计问题转化为状态估计问题。给出了用于加速度计和陀螺的双扩展卡尔曼滤波器的完整方法和描述。为了减少计算量,在机械化中实现了一种预滤波技术(数据压缩或测量平均),而滤波器的性能几乎没有下降。详细介绍了所使用的陀螺仪和加速度计模型。提出了一种利用信息矩阵最大化的方法生成仪器参数可观测性的参数激励轨迹的方法。给出了一组用于参数估计和创新序列的模拟器数据集的典型结果,以显示滤波器估计的性能、收敛性、准确性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信