Application of Support Vector Machine to Capital Flow Risks Prediction

Xiping Wang
{"title":"Application of Support Vector Machine to Capital Flow Risks Prediction","authors":"Xiping Wang","doi":"10.1109/IUCE.2009.49","DOIUrl":null,"url":null,"abstract":"Under the opening economic circumstances, forecasting the risks of capital flow has special significance. For effectively early warning the risks associated with capital flow, this study applies support vector machine (SVM) to the domain of capital flow in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, a grid-search technique using 5-fold cross-validation is used to find out the best parameter value of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, this study compares its performance with that of three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the BPNs.","PeriodicalId":153560,"journal":{"name":"2009 International Symposium on Intelligent Ubiquitous Computing and Education","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Intelligent Ubiquitous Computing and Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUCE.2009.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Under the opening economic circumstances, forecasting the risks of capital flow has special significance. For effectively early warning the risks associated with capital flow, this study applies support vector machine (SVM) to the domain of capital flow in an attempt to suggest a new model with better explanatory power and stability. To serve this purpose, a grid-search technique using 5-fold cross-validation is used to find out the best parameter value of kernel function of SVM. In addition, to evaluate the prediction accuracy of SVM, this study compares its performance with that of three-layer fully connected back-propagation neural networks (BPNs). The experiment results show that SVM outperforms the BPNs.
支持向量机在资本流动风险预测中的应用
在开放的经济环境下,对资本流动风险进行预测具有特殊的意义。为了有效地预警与资本流动相关的风险,本研究将支持向量机(SVM)应用于资本流动领域,试图提出一个具有更好解释力和稳定性的新模型。为此,采用五重交叉验证的网格搜索技术,找出支持向量机核函数的最佳参数值。此外,为了评估支持向量机的预测精度,本研究将其性能与三层全连接反向传播神经网络(BPNs)的性能进行了比较。实验结果表明,支持向量机优于bp网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信