{"title":"Bottom-Up & Top-down Object Detection using Primal Sketch Features and Graphical Models","authors":"Iasonas Kokkinos, P. Maragos, A. Yuille","doi":"10.1109/CVPR.2006.74","DOIUrl":null,"url":null,"abstract":"A combination of techniques that is becoming increasingly popular is the construction of part-based object representations using the outputs of interest-point detectors. Our contributions in this paper are twofold: first, we propose a primal-sketch-based set of image tokens that are used for object representation and detection. Second, top-down information is introduced based on an efficient method for the evaluation of the likelihood of hypothesized part locations. This allows us to use graphical model techniques to complement bottom-up detection, by proposing and finding the parts of the object that were missed by the front-end feature detection stage. Detection results for four object categories validate the merits of this joint top-down and bottom-up approach.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
A combination of techniques that is becoming increasingly popular is the construction of part-based object representations using the outputs of interest-point detectors. Our contributions in this paper are twofold: first, we propose a primal-sketch-based set of image tokens that are used for object representation and detection. Second, top-down information is introduced based on an efficient method for the evaluation of the likelihood of hypothesized part locations. This allows us to use graphical model techniques to complement bottom-up detection, by proposing and finding the parts of the object that were missed by the front-end feature detection stage. Detection results for four object categories validate the merits of this joint top-down and bottom-up approach.