A factorial hidden markov model (FHMM)-based reasoner for diagnosing multiple intermittent faults

Satnam Singh, A. Kodali, K. Pattipati
{"title":"A factorial hidden markov model (FHMM)-based reasoner for diagnosing multiple intermittent faults","authors":"Satnam Singh, A. Kodali, K. Pattipati","doi":"10.1109/COASE.2009.5234134","DOIUrl":null,"url":null,"abstract":"This paper presents a factorial hidden Markov model (FHMM)-based diagnostic reasoner to handle multiple intermittent faults. The dynamic multiple fault diagnosis (DMFD) problem is to determine the most likely evolution of fault states, the one that best explains the observed test outcomes over time. In our previous research work [1], we have shown that the problem of diagnosing dynamic multiple faults in the presence of imperfect test outcomes, is an NP-hard problem. Here, we combine a Gauss-Seidel coordinate ascent optimization method with a Soft Viterbi decoding algorithm for solving the DMFD problem. We demonstrated the algorithm on small-scale and medium-scale systems and the simulation results shows that this approach improves primal function value (1.4%∼8.3%) and correct isolation rate (1.7%∼11.4%) as compared to a Lagrangian relaxation method discussed in our previous work [1].","PeriodicalId":386046,"journal":{"name":"2009 IEEE International Conference on Automation Science and Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2009.5234134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents a factorial hidden Markov model (FHMM)-based diagnostic reasoner to handle multiple intermittent faults. The dynamic multiple fault diagnosis (DMFD) problem is to determine the most likely evolution of fault states, the one that best explains the observed test outcomes over time. In our previous research work [1], we have shown that the problem of diagnosing dynamic multiple faults in the presence of imperfect test outcomes, is an NP-hard problem. Here, we combine a Gauss-Seidel coordinate ascent optimization method with a Soft Viterbi decoding algorithm for solving the DMFD problem. We demonstrated the algorithm on small-scale and medium-scale systems and the simulation results shows that this approach improves primal function value (1.4%∼8.3%) and correct isolation rate (1.7%∼11.4%) as compared to a Lagrangian relaxation method discussed in our previous work [1].
基于因子隐马尔可夫模型(FHMM)的多断续故障诊断
提出了一种基于因子隐马尔可夫模型(FHMM)的多间歇故障诊断推理器。动态多故障诊断(DMFD)问题是确定最可能的故障状态演变,最能解释观察到的测试结果随时间的变化。在我们之前的研究工作[1]中,我们已经表明,在存在不完美测试结果的情况下诊断动态多故障的问题是一个np困难问题。本文将Gauss-Seidel坐标上升优化方法与Soft Viterbi译码算法相结合来解决DMFD问题。我们在小型和中型系统上演示了该算法,仿真结果表明,与我们之前的工作[1]中讨论的拉格朗日松弛方法相比,该方法提高了原始函数值(1.4% ~ 8.3%)和正确隔离率(1.7% ~ 11.4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信