Robust Optimal Control of Continuous Time Linear System using Reinforcement Learning

Abdul Sami, A. Memon
{"title":"Robust Optimal Control of Continuous Time Linear System using Reinforcement Learning","authors":"Abdul Sami, A. Memon","doi":"10.1109/ANZCC.2018.8606607","DOIUrl":null,"url":null,"abstract":"The paper explores the area of Reinforcement Learning (RL) that is emerging as an elegant tool in solving the control problems that require optimality and robustness simultaneously. The task of stabilization of an inverted pendulum system with known/unknown internal dynamics is discussed to reveal the advantages of RL approach over conventional approach and is demonstrated using simulations. Also discussed are the algorithmic challenges faced by the designer in using the RL approach for online robust optimal control of unknown systems.","PeriodicalId":358801,"journal":{"name":"2018 Australian & New Zealand Control Conference (ANZCC)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC.2018.8606607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper explores the area of Reinforcement Learning (RL) that is emerging as an elegant tool in solving the control problems that require optimality and robustness simultaneously. The task of stabilization of an inverted pendulum system with known/unknown internal dynamics is discussed to reveal the advantages of RL approach over conventional approach and is demonstrated using simulations. Also discussed are the algorithmic challenges faced by the designer in using the RL approach for online robust optimal control of unknown systems.
基于强化学习的连续时间线性系统鲁棒最优控制
本文探讨了强化学习(RL)领域,该领域正在成为解决同时需要最优性和鲁棒性的控制问题的优雅工具。讨论了具有已知/未知内动力学的倒立摆系统的稳定任务,揭示了RL方法相对于传统方法的优势,并通过仿真进行了验证。还讨论了设计者在使用强化学习方法对未知系统进行在线鲁棒最优控制时所面临的算法挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信