InterCriteria Analysis of crossover and mutation rates relations in simple genetic algorithm

M. Angelova, O. Roeva, T. Pencheva
{"title":"InterCriteria Analysis of crossover and mutation rates relations in simple genetic algorithm","authors":"M. Angelova, O. Roeva, T. Pencheva","doi":"10.15439/2015F178","DOIUrl":null,"url":null,"abstract":"In this investigation recently developed InterCriteria Analysis (ICA) is applied to examine the influences of two main genetic algorithms parameters - crossover and mutation rates during the model parameter identification of S. cerevisiae and E. coli fermentation processes. The apparatuses of index matrices and intuitionistic fuzzy sets, which are the core of ICA, are used to establish the relations between investigated genetic algorithms parameters, from one hand, and fermentation process model parameters, from the other hand. The obtained results after ICA application are analysed towards convergence time and model accuracy and some conclusions about derived interactions are reported.","PeriodicalId":276884,"journal":{"name":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Federated Conference on Computer Science and Information Systems (FedCSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15439/2015F178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this investigation recently developed InterCriteria Analysis (ICA) is applied to examine the influences of two main genetic algorithms parameters - crossover and mutation rates during the model parameter identification of S. cerevisiae and E. coli fermentation processes. The apparatuses of index matrices and intuitionistic fuzzy sets, which are the core of ICA, are used to establish the relations between investigated genetic algorithms parameters, from one hand, and fermentation process model parameters, from the other hand. The obtained results after ICA application are analysed towards convergence time and model accuracy and some conclusions about derived interactions are reported.
简单遗传算法中交叉率和突变率关系的标准间分析
在本研究中,应用最近发展的标准间分析(ICA)来研究两个主要遗传算法参数-交叉率和突变率在酿酒酵母和大肠杆菌发酵过程模型参数识别中的影响。利用指数矩阵和直觉模糊集作为ICA的核心工具,建立所研究的遗传算法参数与发酵过程模型参数之间的关系。从收敛时间和模型精度两个方面分析了ICA应用后得到的结果,并报道了推导出的相互作用的一些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信