Interest Point Based Tracking

Werner Kloihofer, M. Kampel
{"title":"Interest Point Based Tracking","authors":"Werner Kloihofer, M. Kampel","doi":"10.1109/ICPR.2010.866","DOIUrl":null,"url":null,"abstract":"This paper deals with a novel method for object tracking. In the first step interest points are detected and feature descriptors around them are calculated. Sets of known points are created, allowing tracking based on point matching. The set representation is updated online at every tracking step. Our method uses one-shot learning with the first frame, so no offline and no supervised learning is required. Following an object recognition based approach there is no need for a background model or motion model, allowing tracking of abrupt motion and with non-stationary cameras. We compare our method to Mean Shift and Tracking via Online Boosting, showing the benefits of our approach.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

This paper deals with a novel method for object tracking. In the first step interest points are detected and feature descriptors around them are calculated. Sets of known points are created, allowing tracking based on point matching. The set representation is updated online at every tracking step. Our method uses one-shot learning with the first frame, so no offline and no supervised learning is required. Following an object recognition based approach there is no need for a background model or motion model, allowing tracking of abrupt motion and with non-stationary cameras. We compare our method to Mean Shift and Tracking via Online Boosting, showing the benefits of our approach.
兴趣点跟踪
提出了一种新的目标跟踪方法。第一步检测兴趣点,计算兴趣点周围的特征描述符。创建已知点的集合,允许基于点匹配的跟踪。集合表示在每个跟踪步骤在线更新。我们的方法使用第一帧的一次性学习,因此不需要离线学习和监督学习。基于目标识别的方法不需要背景模型或运动模型,允许跟踪突然运动和非静止相机。我们将我们的方法与Mean Shift和通过在线增强的跟踪方法进行比较,显示了我们方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信