{"title":"A Spectral Feature Based CNN Long Short-Term Memory Approach for Classification","authors":"J. Rochac, N. Zhang, Jiang Xiong","doi":"10.1109/ICICIP47338.2019.9012180","DOIUrl":null,"url":null,"abstract":"This paper presents a Gaussian data augmentation-assisted deep learning using a convolutional neural network (PCA18+GDA100+CNN LSTM) on the analysis of the state-of-the-art infrared backscatter imaging spectroscopy (IBIS) images. Both PCA and data augmentation methods were used to preprocess classification input and predict with a comparable degree of accuracy. Initially, PCA was used to reduce the number of features. We used 18 principal components based of the cumulative variance, which totaled 99.92%. GDA was also used to increase the number of samples. CNN-LSTM (long short-term memory) was then used to perform multiclass classification on the IBIS hyperspectral image. Experiments were conducted and results were collected from the K-fold cross-validation with K=20. They were analyzed with a confusion matrix and the average accuracy is 99%.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a Gaussian data augmentation-assisted deep learning using a convolutional neural network (PCA18+GDA100+CNN LSTM) on the analysis of the state-of-the-art infrared backscatter imaging spectroscopy (IBIS) images. Both PCA and data augmentation methods were used to preprocess classification input and predict with a comparable degree of accuracy. Initially, PCA was used to reduce the number of features. We used 18 principal components based of the cumulative variance, which totaled 99.92%. GDA was also used to increase the number of samples. CNN-LSTM (long short-term memory) was then used to perform multiclass classification on the IBIS hyperspectral image. Experiments were conducted and results were collected from the K-fold cross-validation with K=20. They were analyzed with a confusion matrix and the average accuracy is 99%.