Small-variance asymptotics of hidden Potts-MRFS: Application to fast Bayesian image segmentation

M. Pereyra, S. Mclaughlin
{"title":"Small-variance asymptotics of hidden Potts-MRFS: Application to fast Bayesian image segmentation","authors":"M. Pereyra, S. Mclaughlin","doi":"10.5281/ZENODO.43882","DOIUrl":null,"url":null,"abstract":"This paper presents a new approximate Bayesian estimator for hidden Potts-Markov random fields, with application to fast K-class image segmentation. The estimator is derived by conducting a small-variance-asymptotic analysis of an augmented Bayesian model in which the spatial regularisation and the integer-constrained terms of the Potts model are decoupled. This leads to a new image segmentation methodology that can be efficiently implemented in large 2D and 3D scenarios by using modern convex optimisation techniques. Experimental results on synthetic and real images as well as comparisons with state-of-the-art algorithms confirm that the proposed methodology converges extremely fast and produces accurate segmentation results in only few iterations.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new approximate Bayesian estimator for hidden Potts-Markov random fields, with application to fast K-class image segmentation. The estimator is derived by conducting a small-variance-asymptotic analysis of an augmented Bayesian model in which the spatial regularisation and the integer-constrained terms of the Potts model are decoupled. This leads to a new image segmentation methodology that can be efficiently implemented in large 2D and 3D scenarios by using modern convex optimisation techniques. Experimental results on synthetic and real images as well as comparisons with state-of-the-art algorithms confirm that the proposed methodology converges extremely fast and produces accurate segmentation results in only few iterations.
隐Potts-MRFS的小方差渐近:在快速贝叶斯图像分割中的应用
提出了一种新的隐波茨-马尔可夫随机场近似贝叶斯估计,并将其应用于k类图像的快速分割。估计量是通过对增强贝叶斯模型进行小方差渐近分析得出的,其中空间正则化和Potts模型的整数约束项是解耦的。这导致了一种新的图像分割方法,可以通过使用现代凸优化技术在大型2D和3D场景中有效地实现。在合成图像和真实图像上的实验结果以及与最先进算法的比较证实了所提出的方法收敛速度极快,并且在很少的迭代中产生准确的分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信