Query and Keyframe Representations for Ad-hoc Video Search

Fotini Markatopoulou, Damianos Galanopoulos, V. Mezaris, I. Patras
{"title":"Query and Keyframe Representations for Ad-hoc Video Search","authors":"Fotini Markatopoulou, Damianos Galanopoulos, V. Mezaris, I. Patras","doi":"10.1145/3078971.3079041","DOIUrl":null,"url":null,"abstract":"This paper presents a fully-automatic method that combines video concept detection and textual query analysis in order to solve the problem of ad-hoc video search. We present a set of NLP steps that cleverly analyse different parts of the query in order to convert it to related semantic concepts, we propose a new method for transforming concept-based keyframe and query representations into a common semantic embedding space, and we show that our proposed combination of concept-based representations with their corresponding semantic embeddings results to improved video search accuracy. Our experiments in the TRECVID AVS 2016 and the Video Search 2008 datasets show the effectiveness of the proposed method compared to other similar approaches.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

This paper presents a fully-automatic method that combines video concept detection and textual query analysis in order to solve the problem of ad-hoc video search. We present a set of NLP steps that cleverly analyse different parts of the query in order to convert it to related semantic concepts, we propose a new method for transforming concept-based keyframe and query representations into a common semantic embedding space, and we show that our proposed combination of concept-based representations with their corresponding semantic embeddings results to improved video search accuracy. Our experiments in the TRECVID AVS 2016 and the Video Search 2008 datasets show the effectiveness of the proposed method compared to other similar approaches.
自组织视频搜索的查询和关键帧表示
本文提出了一种将视频概念检测与文本查询分析相结合的全自动视频搜索方法。我们提出了一组NLP步骤,巧妙地分析查询的不同部分,以便将其转换为相关的语义概念,我们提出了一种将基于概念的关键帧和查询表示转换为公共语义嵌入空间的新方法,我们表明,我们提出的基于概念的表示与其相应的语义嵌入结果的组合提高了视频搜索的准确性。我们在TRECVID AVS 2016和Video Search 2008数据集上的实验表明,与其他类似方法相比,所提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信