State Predictor of Classification Cognitive Engine Applied to Channel Fading

Rigoberto Roche', J. Downey, Mick V. Koch
{"title":"State Predictor of Classification Cognitive Engine Applied to Channel Fading","authors":"Rigoberto Roche', J. Downey, Mick V. Koch","doi":"10.1109/CCAAW.2019.8904888","DOIUrl":null,"url":null,"abstract":"This study presents the application of machine learning (ML) to a space-to-ground communication link, showing how ML can be used to detect the presence of detrimental channel fading. Using this channel state information, the communication link can be used more efficiently by reducing the amount of lost data during fading. The motivation for this work is based on channel fading observed during on-orbit operations with NASA's Space Communication and Navigation (SCaN) testbed on the International Space Station (ISS). This paper presents the process to extract a target concept (fading and not-fading) from the raw data. The preprocessing and data exploration effort is explained in detail, with a list of assumptions made for parsing and labelling the dataset. The model selection process is explained, specifically emphasizing the benefits of using an ensemble of algorithms with majority voting for binary classification of the channel state. Experimental results are shown, highlighting how an end-to-end communication system can utilize knowledge of the channel fading status to identity fading and take appropriate action. With a laboratory testbed to emulate channel fading, the overall performance is compared to standard adaptive methods without fading knowledge, such as adaptive coding and modulation.","PeriodicalId":196580,"journal":{"name":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","volume":"32 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAAW.2019.8904888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the application of machine learning (ML) to a space-to-ground communication link, showing how ML can be used to detect the presence of detrimental channel fading. Using this channel state information, the communication link can be used more efficiently by reducing the amount of lost data during fading. The motivation for this work is based on channel fading observed during on-orbit operations with NASA's Space Communication and Navigation (SCaN) testbed on the International Space Station (ISS). This paper presents the process to extract a target concept (fading and not-fading) from the raw data. The preprocessing and data exploration effort is explained in detail, with a list of assumptions made for parsing and labelling the dataset. The model selection process is explained, specifically emphasizing the benefits of using an ensemble of algorithms with majority voting for binary classification of the channel state. Experimental results are shown, highlighting how an end-to-end communication system can utilize knowledge of the channel fading status to identity fading and take appropriate action. With a laboratory testbed to emulate channel fading, the overall performance is compared to standard adaptive methods without fading knowledge, such as adaptive coding and modulation.
分类认知引擎状态预测器在信道衰落中的应用
本研究介绍了机器学习(ML)在空对地通信链路中的应用,展示了机器学习如何用于检测有害信道衰落的存在。利用这些信道状态信息,可以通过减少衰落期间丢失的数据量来更有效地利用通信链路。这项工作的动机是基于NASA在国际空间站(ISS)的空间通信和导航(SCaN)试验台在轨运行期间观察到的信道衰落。本文介绍了从原始数据中提取目标概念(衰落和非衰落)的过程。详细解释了预处理和数据探索工作,并列出了用于分析和标记数据集的一系列假设。解释了模型选择过程,特别强调了使用具有多数投票的算法集成对信道状态进行二进制分类的好处。给出了实验结果,强调了端到端通信系统如何利用信道衰落状态的知识来识别衰落并采取适当的行动。在实验室测试平台上模拟信道衰落,并将其总体性能与没有衰落知识的标准自适应方法(如自适应编码和调制)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信