Improving Software Middleboxes and Datacenter Task Schedulers

Hugo de Freitas Siqueira Sadok Menna Barreto
{"title":"Improving Software Middleboxes and Datacenter Task Schedulers","authors":"Hugo de Freitas Siqueira Sadok Menna Barreto","doi":"10.5753/sbrc_estendido.2019.7780","DOIUrl":null,"url":null,"abstract":"Shared systems have contributed to the popularity of many technologies. However, these systems often confront a common challenge: to ensure that resources are fairly divided without compromising utilization efficiency. In this master's thesis we look at this problem in two distinct systems---software middleboxes and datacenter task schedulers. We first present Sprayer, a system that uses packet spraying to load balance packets to cores in software middleboxes. Our design eliminates the imbalance problems of per-flow solutions and addresses the new challenges of handling shared flow states that come with packet spraying. Then, we present Stateful Dominant Resource Fairness (SDRF), a task scheduling policy for datacenters that looks at past allocations and enforces fairness in the long run. SDRF reduces users' waiting time on average and improves fairness by increasing the number of completed tasks for users with lower demands, with small impact on high-demand users.","PeriodicalId":417225,"journal":{"name":"Anais Estendidos do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC)","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbrc_estendido.2019.7780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shared systems have contributed to the popularity of many technologies. However, these systems often confront a common challenge: to ensure that resources are fairly divided without compromising utilization efficiency. In this master's thesis we look at this problem in two distinct systems---software middleboxes and datacenter task schedulers. We first present Sprayer, a system that uses packet spraying to load balance packets to cores in software middleboxes. Our design eliminates the imbalance problems of per-flow solutions and addresses the new challenges of handling shared flow states that come with packet spraying. Then, we present Stateful Dominant Resource Fairness (SDRF), a task scheduling policy for datacenters that looks at past allocations and enforces fairness in the long run. SDRF reduces users' waiting time on average and improves fairness by increasing the number of completed tasks for users with lower demands, with small impact on high-demand users.
改进软件中间件和数据中心任务调度程序
共享系统促进了许多技术的普及。然而,这些系统经常面临一个共同的挑战:确保在不影响利用效率的情况下公平分配资源。在这篇硕士论文中,我们将从两个不同的系统——软件中间件和数据中心任务调度器——来研究这个问题。我们首先介绍了Sprayer,这是一个使用数据包喷洒的系统,在软件中间盒中对数据包进行负载平衡。我们的设计消除了每个流解决方案的不平衡问题,并解决了处理包喷涂带来的共享流状态的新挑战。然后,我们提出了有状态主导资源公平性(SDRF),这是一种数据中心的任务调度策略,可以查看过去的分配并在长期内强制执行公平性。SDRF减少了用户的平均等待时间,通过增加低需求用户完成任务的数量来提高公平性,对高需求用户的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信