Optimal Study of a High Specific Torque Vernier-type Axial-flux PM Machine with Two Different Stators and a Single Winding

Murat G. Kesgin, Peng Han, N. Taran, D. Ionel
{"title":"Optimal Study of a High Specific Torque Vernier-type Axial-flux PM Machine with Two Different Stators and a Single Winding","authors":"Murat G. Kesgin, Peng Han, N. Taran, D. Ionel","doi":"10.1109/ECCE44975.2020.9235901","DOIUrl":null,"url":null,"abstract":"This paper presents the optimal study of a verniertype axial-flux permanent-magnet (AFPM) machine, which has a high-polarity spoke-type PM rotor, a wound stator with a low number of coils, and a profiled stator. Both stators have profiled teeth to enhance the magnetic interaction between the rotor PM array and stator windings for torque production. Compared to the topology with two wound stators, the studied one has a smaller total axial length and is expected more suitable for applications where the space is limited in axial direction. Both topologies are optimized through 3-dimensional (3D) finite element analysis (FEA) by the combined design of experiments (DOE) based sensitivity analysis and surrogate-assisted multiobjective differential evolution (DE) algorithm. Key factors affecting the two objectives, i.e., total active material cost and total electromagnetic loss, are identified. The optimization results are presented and compared, providing practical guidelines for the optimal design and operation of such machines. The manufacturing aspects and their impacts on the electromagnetic performance are also discussed.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9235901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents the optimal study of a verniertype axial-flux permanent-magnet (AFPM) machine, which has a high-polarity spoke-type PM rotor, a wound stator with a low number of coils, and a profiled stator. Both stators have profiled teeth to enhance the magnetic interaction between the rotor PM array and stator windings for torque production. Compared to the topology with two wound stators, the studied one has a smaller total axial length and is expected more suitable for applications where the space is limited in axial direction. Both topologies are optimized through 3-dimensional (3D) finite element analysis (FEA) by the combined design of experiments (DOE) based sensitivity analysis and surrogate-assisted multiobjective differential evolution (DE) algorithm. Key factors affecting the two objectives, i.e., total active material cost and total electromagnetic loss, are identified. The optimization results are presented and compared, providing practical guidelines for the optimal design and operation of such machines. The manufacturing aspects and their impacts on the electromagnetic performance are also discussed.
双定子单绕组高比转矩游标式轴向磁通永磁电机的优化研究
本文对具有高极性辐条式永磁转子、线圈数少的绕线定子和异形定子的游标式轴向磁通永磁电机进行了优化研究。两个定子都有齿形,以增强转子永磁阵列和定子绕组之间的磁相互作用,以产生扭矩。与双绕组定子拓扑结构相比,所研究的定子具有更小的总轴向长度,预计更适合于轴向空间有限的应用。基于实验设计(DOE)的灵敏度分析和代理辅助的多目标差分进化(DE)算法相结合,通过三维有限元分析(FEA)对两种拓扑结构进行优化。确定了影响这两个目标的关键因素,即总活性材料成本和总电磁损耗。并对优化结果进行了比较,为该类机床的优化设计和运行提供了实用指导。讨论了制造工艺及其对电磁性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信