Name Transliteration with Bidirectional Perceptron Edit Models

Dayne Freitag, Zhiqiang Wang
{"title":"Name Transliteration with Bidirectional Perceptron Edit Models","authors":"Dayne Freitag, Zhiqiang Wang","doi":"10.3115/1699705.1699739","DOIUrl":null,"url":null,"abstract":"We report on our efforts as part of the shared task on the NEWS 2009 Machine Transliteration Shared Task. We applied an orthographic perceptron character edit model that we have used previously for name transliteration, enhancing it in two ways: by ranking possible transliterations according to the sum of their scores according to two models, one trained to generate left-to-right, and one right-to-left; and by constraining generated strings to be consistent with character bigrams observed in the respective language's training data. Our poor showing in the official evaluation was due to a bug in the script used to produce competition-compliant output. Subsequent evaluation shows that our approach yielded comparatively strong performance on all alphabetic language pairs we attempted.","PeriodicalId":262513,"journal":{"name":"NEWS@IJCNLP","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1699705.1699739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We report on our efforts as part of the shared task on the NEWS 2009 Machine Transliteration Shared Task. We applied an orthographic perceptron character edit model that we have used previously for name transliteration, enhancing it in two ways: by ranking possible transliterations according to the sum of their scores according to two models, one trained to generate left-to-right, and one right-to-left; and by constraining generated strings to be consistent with character bigrams observed in the respective language's training data. Our poor showing in the official evaluation was due to a bug in the script used to produce competition-compliant output. Subsequent evaluation shows that our approach yielded comparatively strong performance on all alphabetic language pairs we attempted.
使用双向感知器编辑模型的名称音译
我们在NEWS 2009机器音译共享任务中报告我们作为共享任务的一部分所做的努力。我们应用了一个我们之前用于名称音译的正字法感知器字符编辑模型,并从两个方面对其进行了增强:根据两个模型的分数总和对可能的音译进行排名,一个模型训练生成从左到右,一个模型训练生成从右到左;并且通过约束生成的字符串与在各自语言的训练数据中观察到的字符组合一致。我们在官方评估中的糟糕表现是由于用于生成符合竞争的输出的脚本中的一个错误。随后的评估表明,我们的方法在我们尝试的所有字母语言对上产生了相对较强的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信