LSTM-ACB-Based Random Access for Mixed Traffic IoT Networks

H. L. D. Santos, João Henrique Inacio de Souza, José Carlos Marinello Filho, T. Abrão
{"title":"LSTM-ACB-Based Random Access for Mixed Traffic IoT Networks","authors":"H. L. D. Santos, João Henrique Inacio de Souza, José Carlos Marinello Filho, T. Abrão","doi":"10.1109/WF-IoT54382.2022.10152141","DOIUrl":null,"url":null,"abstract":"We propose a novel random access (RA) protocol that accounts for the network traffic in mixed URLLC-mMTC scenarios. By considering an IoT environment under high mMTC traffic demand, we model the traffic of each service using realistic statistical models, with the mMTC and URLLC use modes presenting a long-term traffic regularity. A long-short term memory (LSTM) neural network (NN) is used as a network traffic predictor, enabling a traffic-aware resource slicing (RS) scheme, aided by a contention access control barring (ACB)-based procedure. The proposed method combines a grant-based RA scheme, where it is introduced an intermediate step in grant-free RA, to deal with collisions. The protocol presents a small overhead, supporting a higher number of packets in a frame thanks to the congestion alleviation enabled by the ACB procedure. Numerical results show the effectiveness in combining the three procedures in terms of accuracy for traffic prediction, resource utilization and channel loading for RS, and increased throughput. The comparison with a grant-free benchmark reveals substantial improvement in system performance.","PeriodicalId":176605,"journal":{"name":"2022 IEEE 8th World Forum on Internet of Things (WF-IoT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th World Forum on Internet of Things (WF-IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WF-IoT54382.2022.10152141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel random access (RA) protocol that accounts for the network traffic in mixed URLLC-mMTC scenarios. By considering an IoT environment under high mMTC traffic demand, we model the traffic of each service using realistic statistical models, with the mMTC and URLLC use modes presenting a long-term traffic regularity. A long-short term memory (LSTM) neural network (NN) is used as a network traffic predictor, enabling a traffic-aware resource slicing (RS) scheme, aided by a contention access control barring (ACB)-based procedure. The proposed method combines a grant-based RA scheme, where it is introduced an intermediate step in grant-free RA, to deal with collisions. The protocol presents a small overhead, supporting a higher number of packets in a frame thanks to the congestion alleviation enabled by the ACB procedure. Numerical results show the effectiveness in combining the three procedures in terms of accuracy for traffic prediction, resource utilization and channel loading for RS, and increased throughput. The comparison with a grant-free benchmark reveals substantial improvement in system performance.
基于lstm - acb的混合流量物联网随机接入
我们提出了一种新的随机访问(RA)协议,该协议考虑了混合URLLC-mMTC场景下的网络流量。考虑到高mMTC流量需求的物联网环境,我们使用真实的统计模型对各业务的流量进行建模,mMTC和URLLC使用模式呈现出长期的流量规律。将长短期记忆(LSTM)神经网络(NN)作为网络流量预测器,在基于争用访问控制(ACB)的过程的辅助下,实现流量感知的资源切片(RS)方案。该方法结合了基于授权的RA方案,在无授权RA中引入中间步骤来处理冲突。该协议开销很小,由于ACB过程使能了拥塞缓解,因此在一个帧中支持更多的数据包。数值结果表明,在流量预测精度、RS的资源利用率和信道负载以及吞吐量提高方面,三种方法相结合是有效的。与无授权基准的比较揭示了系统性能的实质性改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信