A superposition-based analog data compression scheme for massively-parallel neural recordings

Jonas David Rieseler, M. Kuhl
{"title":"A superposition-based analog data compression scheme for massively-parallel neural recordings","authors":"Jonas David Rieseler, M. Kuhl","doi":"10.1109/BIOCAS.2017.8325550","DOIUrl":null,"url":null,"abstract":"An analog data compression scheme for massively-parallel observation of neural activity is presented, that simultaneously reduces the total number of physical transmission lines. The compression is realized by superimposing signals of different recording sites on one common transmission line, a reconstruction of spatial information is achievable by correlation, for which three simple mathematical operations are presented. The generalized system-theoretical description allows to apply the concept to any multidimensional analog sensing network, and grants to extract the relation between compression and SNR reduction. Simulation-based examples of neural recording arrays revealed possible transmission line reductions of 92% in a 25 × 25 array with 11.5dB higher noise floor, or 70.8% in a 6×8 array with an SNR reduction equivalent to only 1 bit of resolution.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An analog data compression scheme for massively-parallel observation of neural activity is presented, that simultaneously reduces the total number of physical transmission lines. The compression is realized by superimposing signals of different recording sites on one common transmission line, a reconstruction of spatial information is achievable by correlation, for which three simple mathematical operations are presented. The generalized system-theoretical description allows to apply the concept to any multidimensional analog sensing network, and grants to extract the relation between compression and SNR reduction. Simulation-based examples of neural recording arrays revealed possible transmission line reductions of 92% in a 25 × 25 array with 11.5dB higher noise floor, or 70.8% in a 6×8 array with an SNR reduction equivalent to only 1 bit of resolution.
一种基于叠加的模拟数据压缩方案,用于大规模并行神经记录
提出了一种用于大规模并行神经活动观测的模拟数据压缩方案,同时减少了物理传输线的总数。压缩是通过在同一条公共传输线上叠加不同记录点的信号来实现的,空间信息的重构是通过相关来实现的,并给出了三个简单的数学运算。广义系统理论描述允许将该概念应用于任何多维模拟传感网络,并授予提取压缩和信噪比降低之间的关系。基于仿真的神经记录阵列示例显示,在25 × 25阵列中,本底噪声提高11.5dB,传输线可能降低92%,在6×8阵列中,信噪比降低仅相当于1位分辨率,传输线可能降低70.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信