Dynamic 3D-Obstacles Detection by a Monocular Camera and a 3D Map

Junya Shikishima, T. Tasaki
{"title":"Dynamic 3D-Obstacles Detection by a Monocular Camera and a 3D Map","authors":"Junya Shikishima, T. Tasaki","doi":"10.1109/IEEECONF49454.2021.9382660","DOIUrl":null,"url":null,"abstract":"We developed a new method for 3D-obstacles de-tection using a 3D map. Three-dimensional-obstacles detection is a key function of autonomous driving. It is easy to detect static obstacles because they exist in the 3D map. However, the 3D detection of dynamic obstacles that are not in the 3D map is difficult for a typical in-vehicle camera that cannot measure the distance. We aim to detect dynamic obstacles three-dimensionally, using an in-vehicle camera. And we deal with the new problem of accurate 3D reconstruction by using a monocular camera and a 3D map. To solve this problem, we focused on semantic segmentation for detection and depth completion to complement the depth map. We propose a multitask neural network (NN) that shares the encoder of semantic segmentation NN and depth completion NN, whose inputs are an image and a 3D map. The proposed multi-task NN detects dynamic obstacles 1.4 times more accurately than the singletask state-of-the-art method.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a new method for 3D-obstacles de-tection using a 3D map. Three-dimensional-obstacles detection is a key function of autonomous driving. It is easy to detect static obstacles because they exist in the 3D map. However, the 3D detection of dynamic obstacles that are not in the 3D map is difficult for a typical in-vehicle camera that cannot measure the distance. We aim to detect dynamic obstacles three-dimensionally, using an in-vehicle camera. And we deal with the new problem of accurate 3D reconstruction by using a monocular camera and a 3D map. To solve this problem, we focused on semantic segmentation for detection and depth completion to complement the depth map. We propose a multitask neural network (NN) that shares the encoder of semantic segmentation NN and depth completion NN, whose inputs are an image and a 3D map. The proposed multi-task NN detects dynamic obstacles 1.4 times more accurately than the singletask state-of-the-art method.
基于单目摄像机和三维地图的动态三维障碍物检测
我们开发了一种使用3D地图进行3D障碍物检测的新方法。三维障碍物检测是自动驾驶的一项关键功能。因为静态障碍物存在于三维地图中,所以很容易检测到它们。然而,对于无法测量距离的典型车载摄像头来说,对三维地图中没有的动态障碍物进行三维检测是很困难的。我们的目标是使用车载摄像头对动态障碍物进行三维检测。利用单目摄像机和三维地图,解决了精确三维重建的新问题。为了解决这个问题,我们将重点放在语义分割检测和深度补全上,以补充深度图。本文提出了一种共享语义分割神经网络和深度补全神经网络编码器的多任务神经网络,其输入为图像和三维地图。所提出的多任务神经网络检测动态障碍物的精度是单任务最先进方法的1.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信