Adaptive Optimal Control of Continuous-Time Linear Systems via Hybrid Iteration

Omar Qasem, Weinan Gao, T. Bian
{"title":"Adaptive Optimal Control of Continuous-Time Linear Systems via Hybrid Iteration","authors":"Omar Qasem, Weinan Gao, T. Bian","doi":"10.1109/SSCI50451.2021.9660016","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel dynamic programming (DP) algorithm, under the name of hybrid iteration (HI), for continuous-time linear systems. The proposed HI approach combines the advantages of two well-known DP algorithms, i.e., policy iteration (PI) and value iteration (VI). In particular, HI drops the need of an initial stabilizing control policy required in PI, and at the same time it maintains a faster convergence rate compared with VI. Based on the proposed HI algorithm, a data-driven adaptive optimal controller design is also proposed. Simulation results for randomly generated continuous-time linear systems with different system orders demonstrate that the proposed HI approach can save CPU time up to 73% and reduce the number of iterations to converge up to 98% comparing with the VI approach.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a novel dynamic programming (DP) algorithm, under the name of hybrid iteration (HI), for continuous-time linear systems. The proposed HI approach combines the advantages of two well-known DP algorithms, i.e., policy iteration (PI) and value iteration (VI). In particular, HI drops the need of an initial stabilizing control policy required in PI, and at the same time it maintains a faster convergence rate compared with VI. Based on the proposed HI algorithm, a data-driven adaptive optimal controller design is also proposed. Simulation results for randomly generated continuous-time linear systems with different system orders demonstrate that the proposed HI approach can save CPU time up to 73% and reduce the number of iterations to converge up to 98% comparing with the VI approach.
基于混合迭代的连续时间线性系统自适应最优控制
针对连续时间线性系统,提出了一种新的动态规划算法——混合迭代算法。本文提出的HI方法结合了策略迭代(PI)和值迭代(VI)两种知名的DP算法的优点,特别是HI算法省去了PI算法对初始稳定控制策略的需要,同时保持了比VI算法更快的收敛速度。基于所提出的HI算法,提出了一种数据驱动的自适应最优控制器设计。对随机生成的不同系统阶数的连续时间线性系统的仿真结果表明,与VI方法相比,所提出的HI方法可以节省高达73%的CPU时间,减少迭代次数,收敛率高达98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信