Iterative algorithm for offset and scale estimation for 1d signals superposition with additive and multiplicative noise

R. Diyazitdinov
{"title":"Iterative algorithm for offset and scale estimation for 1d signals superposition with additive and multiplicative noise","authors":"R. Diyazitdinov","doi":"10.36724/2072-8735-2021-15-12-24-30","DOIUrl":null,"url":null,"abstract":"We describe the algorithm for 1D signal superposition. The superposition is defined by offset and scale. Also the signals contain additive and multiplicative noise. We developed the iterative procedure for superposition of those signals. This procedure includes the separate estimation of offset and scale. The offset is estimated by signals in the Cartesian coordinate system. The scale is estimated by signals in the logarithm coordinate system. The iterative method is approximation to real value of superposition parameters. The parameters of the current iteration depend on the estimation of previous iteration. The error of the parameters estimation from additive gauss noise was by the numerical simulation. The developed algorithm compares with the brute force algorithm (the etalon algorithm). The compassion show that both algorithms are characterized the similar error of the parameters estimation, but developed algorithm is faster.","PeriodicalId":263691,"journal":{"name":"T-Comm","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"T-Comm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36724/2072-8735-2021-15-12-24-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe the algorithm for 1D signal superposition. The superposition is defined by offset and scale. Also the signals contain additive and multiplicative noise. We developed the iterative procedure for superposition of those signals. This procedure includes the separate estimation of offset and scale. The offset is estimated by signals in the Cartesian coordinate system. The scale is estimated by signals in the logarithm coordinate system. The iterative method is approximation to real value of superposition parameters. The parameters of the current iteration depend on the estimation of previous iteration. The error of the parameters estimation from additive gauss noise was by the numerical simulation. The developed algorithm compares with the brute force algorithm (the etalon algorithm). The compassion show that both algorithms are characterized the similar error of the parameters estimation, but developed algorithm is faster.
具有加性和乘性噪声的一维信号叠加的偏移和尺度估计的迭代算法
我们描述了一维信号叠加的算法。叠加由偏移量和比例定义。此外,信号中还含有加性和乘性噪声。我们开发了这些信号叠加的迭代程序。这个程序包括对偏移量和尺度的单独估计。偏移量由笛卡尔坐标系中的信号估计。尺度由对数坐标系中的信号估计。迭代法是对叠加参数实值的逼近。当前迭代的参数依赖于前一次迭代的估计。通过数值模拟分析了加性高斯噪声对参数估计的误差。所开发的算法与蛮力算法(标准龙算法)进行了比较。对比结果表明,两种算法的参数估计误差相似,但所开发的算法速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信