Affinity Pansharpening and Image Fusion

Stephen Tierney, Junbin Gao, Yi Guo
{"title":"Affinity Pansharpening and Image Fusion","authors":"Stephen Tierney, Junbin Gao, Yi Guo","doi":"10.1109/DICTA.2014.7008094","DOIUrl":null,"url":null,"abstract":"A novel framework for enhancing the resolution of a low-resolution multispectral or hyperspectral image using a high resolution panchromatic image or multispectral image is proposed in this paper. This framework can be further used to perform more general types of image fusion. To create the enhanced image, a convex objective function is minimised, which preserves both the pixel affinity learnt from the high resolution image and spectral information from the low resolution image. A fast approximation method is discussed. Quantitive and qualitative analysis against existing methods shows that our method is comparable to state of the art with faster running time and greater flexibility. MATLAB code for our proposed method and the compared methods are freely available in the FuseBox package.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A novel framework for enhancing the resolution of a low-resolution multispectral or hyperspectral image using a high resolution panchromatic image or multispectral image is proposed in this paper. This framework can be further used to perform more general types of image fusion. To create the enhanced image, a convex objective function is minimised, which preserves both the pixel affinity learnt from the high resolution image and spectral information from the low resolution image. A fast approximation method is discussed. Quantitive and qualitative analysis against existing methods shows that our method is comparable to state of the art with faster running time and greater flexibility. MATLAB code for our proposed method and the compared methods are freely available in the FuseBox package.
亲和性泛锐化和图像融合
本文提出了一种利用高分辨率全色图像或多光谱图像增强低分辨率多光谱或高光谱图像分辨率的新框架。该框架可以进一步用于执行更一般类型的图像融合。为了创建增强图像,最小化了一个凸目标函数,它既保留了从高分辨率图像中学习到的像素亲和力,也保留了从低分辨率图像中学习到的光谱信息。讨论了一种快速逼近方法。对现有方法的定量和定性分析表明,我们的方法具有更快的运行时间和更大的灵活性。我们提出的方法和比较方法的MATLAB代码可以在FuseBox包中免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信