Synthetically trained multi-view object class and viewpoint detection for advanced image retrieval

Johannes Schels, Joerg Liebelt, K. Schertler, R. Lienhart
{"title":"Synthetically trained multi-view object class and viewpoint detection for advanced image retrieval","authors":"Johannes Schels, Joerg Liebelt, K. Schertler, R. Lienhart","doi":"10.1145/1991996.1991999","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach to multi-view object class and viewpoint detection for the retrieval of images showing one or several objects from a given viewpoint, a viewpoint range or any viewpoint in image databases. All detectors are trained exclusively on a few synthetic 3D models without any manual bounding-box, viewpoint or part annotation, making object class and viewpoint detection a scalable learning task. Previous work on this topic relies on the detection of object parts for each individual viewpoint, ignoring the responses of part detectors specific to other viewpoints. Instead, we explicitly exploit appearance ambiguities caused by spurious detections of parts under more than one viewpoint by combining all detector responses in a joint spatial pyramid encoding. We achieve state-of-the-art results in multi-view object class detection and viewpoint determination on current benchmarking data sets and demonstrate increased robustness to partial occlusion.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1991999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes a novel approach to multi-view object class and viewpoint detection for the retrieval of images showing one or several objects from a given viewpoint, a viewpoint range or any viewpoint in image databases. All detectors are trained exclusively on a few synthetic 3D models without any manual bounding-box, viewpoint or part annotation, making object class and viewpoint detection a scalable learning task. Previous work on this topic relies on the detection of object parts for each individual viewpoint, ignoring the responses of part detectors specific to other viewpoints. Instead, we explicitly exploit appearance ambiguities caused by spurious detections of parts under more than one viewpoint by combining all detector responses in a joint spatial pyramid encoding. We achieve state-of-the-art results in multi-view object class detection and viewpoint determination on current benchmarking data sets and demonstrate increased robustness to partial occlusion.
综合训练多视点目标分类和视点检测,用于高级图像检索
针对图像数据库中给定视点、视点范围或任意视点中显示一个或多个物体的图像,提出了一种多视点对象类和视点检测的新方法。所有检测器都专门在几个合成3D模型上进行训练,而无需任何手动绑定盒,视点或部分注释,使对象类和视点检测成为可扩展的学习任务。之前关于该主题的工作依赖于每个单独视点的物体部分检测,忽略了特定于其他视点的部分检测器的响应。相反,我们通过将所有探测器响应组合在一个联合空间金字塔编码中,明确地利用了由多个视点下零件的虚假检测引起的外观歧义。我们在当前基准数据集上实现了多视图对象类别检测和视点确定的最新结果,并证明了对部分遮挡的鲁棒性增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信