Depth-3 arithmetic formulae over fields of characteristic zero

Amir Shpilka, A. Wigderson
{"title":"Depth-3 arithmetic formulae over fields of characteristic zero","authors":"Amir Shpilka, A. Wigderson","doi":"10.1109/CCC.1999.766267","DOIUrl":null,"url":null,"abstract":"In this paper we prove near quadratic lower bounds for depth-3 arithmetic formulae over fields of characteristic zero. Such bounds are obtained for the elementary symmetric functions, the (trace of) iterated matrix multiplication, and the determinant. As corollaries we get the first non-trivial lower bounds for computing polynomials of constant degree, and a gap between the power depth-3 arithmetic formulas and depth-4 arithmetic formulas. The main technical contribution relates the complexity of computing a polynomial in this model to the wealth of partial derivatives it has on every affine subspace of small co-dimension. Lower bounds for related models utilize an algebraic analog of Nechiporuk lower bound on Boolean formulae.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"33 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

In this paper we prove near quadratic lower bounds for depth-3 arithmetic formulae over fields of characteristic zero. Such bounds are obtained for the elementary symmetric functions, the (trace of) iterated matrix multiplication, and the determinant. As corollaries we get the first non-trivial lower bounds for computing polynomials of constant degree, and a gap between the power depth-3 arithmetic formulas and depth-4 arithmetic formulas. The main technical contribution relates the complexity of computing a polynomial in this model to the wealth of partial derivatives it has on every affine subspace of small co-dimension. Lower bounds for related models utilize an algebraic analog of Nechiporuk lower bound on Boolean formulae.
特征为零的域上的深度-3算术公式
本文证明了特征为零的域上深度3算术公式的近二次下界。对于初等对称函数,迭代矩阵乘法的(迹),以及行列式,都得到了这样的界。作为推论,我们得到了计算常次多项式的第一个非平凡下界,以及幂深度-3算术公式和深度-4算术公式之间的差距。主要的技术贡献是将该模型中计算多项式的复杂性与它在每个小协维仿射子空间上的偏导数的丰富性联系起来。相关模型的下界利用布尔公式上的Nechiporuk下界的代数模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信