Sharp disparity reconstruction using sparse disparity measurement and color information

Lee-Kang Liu, Zucheul Lee, Truong Nguyen
{"title":"Sharp disparity reconstruction using sparse disparity measurement and color information","authors":"Lee-Kang Liu, Zucheul Lee, Truong Nguyen","doi":"10.1109/IVMSPW.2013.6611899","DOIUrl":null,"url":null,"abstract":"Recently, the work on dense disparity map reconstruction from 5% sparse initial estimates containing edges in disparity, has been proposed [1]. Practically, however, edges in disparity is unknown unless a dense disparity map has already been generated. In this paper, we present a realistic reconstruction framework for obtaining sharp and dense disparity maps from fixed number of sparse initial estimates with the aid of color image information. Experimental results show that sharp and dense disparity maps can be reconstructed at the cost of one pixel accuracy.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, the work on dense disparity map reconstruction from 5% sparse initial estimates containing edges in disparity, has been proposed [1]. Practically, however, edges in disparity is unknown unless a dense disparity map has already been generated. In this paper, we present a realistic reconstruction framework for obtaining sharp and dense disparity maps from fixed number of sparse initial estimates with the aid of color image information. Experimental results show that sharp and dense disparity maps can be reconstructed at the cost of one pixel accuracy.
利用稀疏视差测量和颜色信息进行锐视差重建
最近,有人提出了从包含视差边缘的5%稀疏初始估计重建密集视差图的工作[[1]]。然而,实际上,除非已经生成密集的视差图,否则视差中的边是未知的。本文提出了一种利用彩色图像信息从固定数量的稀疏初始估计中获得清晰密集视差图的现实重建框架。实验结果表明,以1像素的精度为代价,可以重建出尖锐和密集的视差图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信