Data-Adaptive Inversion of the Oklahoma EMAP Dataset.

Y. Ogawa
{"title":"Data-Adaptive Inversion of the Oklahoma EMAP Dataset.","authors":"Y. Ogawa","doi":"10.5636/JGG.49.801","DOIUrl":null,"url":null,"abstract":"The Oklahoma EMAP dataset was analyzed using a two-dimensional inversion algorithm which includes static shifts as free parameters. Model misfit was minimized while simultaneously minimizing the resistivity roughness norm and the static shift L2 norm. The tradeoff parameters between the model misfit and these two norms were determined to minimize the Akaike's Bayesian Information Criterion (ABIC).","PeriodicalId":156587,"journal":{"name":"Journal of geomagnetism and geoelectricity","volume":"403 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geomagnetism and geoelectricity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5636/JGG.49.801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Oklahoma EMAP dataset was analyzed using a two-dimensional inversion algorithm which includes static shifts as free parameters. Model misfit was minimized while simultaneously minimizing the resistivity roughness norm and the static shift L2 norm. The tradeoff parameters between the model misfit and these two norms were determined to minimize the Akaike's Bayesian Information Criterion (ABIC).
俄克拉荷马州EMAP数据集的数据自适应反演。
使用二维反演算法对俄克拉荷马EMAP数据集进行分析,该算法将静态位移作为自由参数。模型失配最小化,同时最小化电阻率粗糙度范数和静态位移L2范数。确定模型不拟合与这两个规范之间的权衡参数,以最小化赤池贝叶斯信息准则(ABIC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信