Eigenfunctions, eigenvalues, and fractionalization of the quaternion and biquaternion fourier transforms

S. Pei, Jian-Jiun Ding, Kuo-Wei Chang
{"title":"Eigenfunctions, eigenvalues, and fractionalization of the quaternion and biquaternion fourier transforms","authors":"S. Pei, Jian-Jiun Ding, Kuo-Wei Chang","doi":"10.5281/ZENODO.42104","DOIUrl":null,"url":null,"abstract":"The discrete quaternion Fourier transform (DQFT) is useful for signal analysis and image processing. In this paper, we derive the eigenfunctions and eigenvalues of the DQFT. We also extend our works to the reduced biquaternion case, i.e., the discrete reduced biquaternion Fourier transform (DRBQFT). We find that an even or odd symmetric eigenvector of the 2-D DFT will also be an eigenvector of the DQFT and the DRBQFT. Moreover, both the DQFT and the DRBQFT have 8 eigenspaces, which correspond to the eigenvalues of 1, -1, i, -i, j, -j, k, and -k. We also use the derived eigenvectors to fractionalize the DQFT and the DRBQFT and define the discrete fractional quaternion transform and the discrete fractional reduced biquaternion Fourier transform.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The discrete quaternion Fourier transform (DQFT) is useful for signal analysis and image processing. In this paper, we derive the eigenfunctions and eigenvalues of the DQFT. We also extend our works to the reduced biquaternion case, i.e., the discrete reduced biquaternion Fourier transform (DRBQFT). We find that an even or odd symmetric eigenvector of the 2-D DFT will also be an eigenvector of the DQFT and the DRBQFT. Moreover, both the DQFT and the DRBQFT have 8 eigenspaces, which correspond to the eigenvalues of 1, -1, i, -i, j, -j, k, and -k. We also use the derived eigenvectors to fractionalize the DQFT and the DRBQFT and define the discrete fractional quaternion transform and the discrete fractional reduced biquaternion Fourier transform.
特征函数,特征值,以及四元数和双四元数傅里叶变换的分数化
离散四元数傅立叶变换(DQFT)在信号分析和图像处理中具有重要的应用价值。本文导出了DQFT的特征函数和特征值。我们还将我们的工作扩展到约四元数的情况下,即离散约四元数傅里叶变换(DRBQFT)。我们发现二维DFT的偶数或奇数对称特征向量也将是DQFT和DRBQFT的特征向量。此外,DQFT和DRBQFT都有8个特征空间,分别对应于特征值1、-1、i、-i、j、-j、k和-k。我们还使用导出的特征向量对DQFT和DRBQFT进行了分数化,并定义了离散分数四元数变换和离散分数约化双四元数傅里叶变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信