Online learning of region confidences for object tracking

Datong Chen, Jie Yang
{"title":"Online learning of region confidences for object tracking","authors":"Datong Chen, Jie Yang","doi":"10.1109/VSPETS.2005.1570891","DOIUrl":null,"url":null,"abstract":"This paper presents an online learning method for object tracking. Motivated by the attention shifting among local regions of a human vision system during tracking, we propose to allow different regions of an object to have different confidences. The confidence of each region is learned online to reflect the discriminative power of the region in feature space and the probability of occlusion. The distribution of region confidences is employed to guide a tracking algorithm to find correspondences in adjacent frames of video images. Only high confidence regions are tracked instead of the entire object. We demonstrate feasibility of the proposed method in video surveillance applications. The method can be combined with many other existing tracking systems to enhance robustness of these systems.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents an online learning method for object tracking. Motivated by the attention shifting among local regions of a human vision system during tracking, we propose to allow different regions of an object to have different confidences. The confidence of each region is learned online to reflect the discriminative power of the region in feature space and the probability of occlusion. The distribution of region confidences is employed to guide a tracking algorithm to find correspondences in adjacent frames of video images. Only high confidence regions are tracked instead of the entire object. We demonstrate feasibility of the proposed method in video surveillance applications. The method can be combined with many other existing tracking systems to enhance robustness of these systems.
用于目标跟踪的区域置信度在线学习
提出了一种用于目标跟踪的在线学习方法。基于人类视觉系统在跟踪过程中注意力在局部区域之间的转移,我们提出允许物体的不同区域具有不同的置信度。在线学习每个区域的置信度,以反映该区域在特征空间中的判别能力和遮挡概率。利用区域置信度的分布来指导跟踪算法在视频图像的相邻帧中寻找对应关系。只跟踪高置信度区域,而不是整个对象。我们证明了该方法在视频监控应用中的可行性。该方法可以与许多其他现有跟踪系统相结合,以增强这些系统的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信