Self-extensional Paradefinite Four-valued Modal Logic Compatible with Standard Modal Logic

N. Kamide
{"title":"Self-extensional Paradefinite Four-valued Modal Logic Compatible with Standard Modal Logic","authors":"N. Kamide","doi":"10.1109/ISMVL57333.2023.00017","DOIUrl":null,"url":null,"abstract":"A Gentzen-style sequent calculus GMA4 is introduced for a modal extension MA4 of Avron’s self-extensional paradefinite four-valued logic. A new Gentzen-style sequent calculus GS4* for normal modal logic S4 is obtained from GMA4 by adding two special inference rules. A theorem for equivalence between GS4* and Kripke’s Gentzen-style sequent calculus GS4 for S4 is proved. Cut- and contraposition-elimination theorems for GMA4 and GS4* are proved. The self-extensional properties of GMA4 and GS4* are obtained from the contraposition-elimination theorems.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"465 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Gentzen-style sequent calculus GMA4 is introduced for a modal extension MA4 of Avron’s self-extensional paradefinite four-valued logic. A new Gentzen-style sequent calculus GS4* for normal modal logic S4 is obtained from GMA4 by adding two special inference rules. A theorem for equivalence between GS4* and Kripke’s Gentzen-style sequent calculus GS4 for S4 is proved. Cut- and contraposition-elimination theorems for GMA4 and GS4* are proved. The self-extensional properties of GMA4 and GS4* are obtained from the contraposition-elimination theorems.
与标准模态逻辑相容的自拓拟定四值模态逻辑
针对Avron的自扩展拟定四值逻辑的模态扩展MA4,引入了根岑式序演算GMA4。在GMA4的基础上,通过添加两个特殊的推理规则,得到了正态逻辑S4的一个新的根岑式序列演算GS4*。证明了GS4*与Kripke的根曾式序演算GS4的等价定理。证明了GMA4和GS4*的切消定理和对位消定理。利用对偶消去定理,得到了GMA4和GS4*的自拓性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信